A simple method to engineer a protein-derived redox cofactor for catalysis.
Sooim Shin, Moonsung Choi, Heather R Williamson, Victor L Davidson
Index: Biochim. Biophys. Acta 1837(10) , 1595-601, (2014)
Full Text: HTML
Abstract
The 6×-Histidine tag which is commonly used for purification of recombinant proteins was converted to a catalytic redox-active center by incorporation of Co(2+). Two examples of the biological activity of this engineered protein-derived cofactor are presented. After inactivation of the natural diheme cofactor of MauG, it was shown that the Co(2+)-loaded 6×His-tag could substitute for the hemes in the H2O2-driven catalysis of tryptophan tryptophylquinone biosynthesis. To further demonstrate that the Co(2+)-loaded 6×His-tag could mediate long range electron transfer, it was shown that addition of H2O2 to the Co(2+)-loaded 6×His-tagged Cu(1+) amicyanin oxidizes the copper site which is 20Å away. These results provide proof of principle for this simple method by which to introduce a catalytic redox-active site into proteins for potential applications in research and biotechnology. Copyright © 2014 Elsevier B.V. All rights reserved.
Related Compounds
Related Articles:
2014-10-01
[J. Biomol. Screen. 19(9) , 1266-74, (2014)]
2015-01-01
[PLoS ONE 10(3) , e0121184, (2015)]
2015-01-01
[Anal. Sci. 31 , 805-14, (2015)]
2015-02-01
[Chronobiol. Int. 32(1) , 59-70, (2015)]
2015-04-29
[J. Proteomics 120 , 194-203, (2015)]