Neurochemistry International 2015-11-01

Nicotinic receptors modulate the function of presynaptic AMPA receptors on glutamatergic nerve terminals in the trigeminal caudal nucleus.

Irene A Samengo, Diego Currò, Maria Martire

Index: Neurochem. Int. 90 , 166-72, (2015)

Full Text: HTML

Abstract

In this study, we demonstrate the existence on trigeminal caudal nucleus (TCN) glutamatergic terminals of α4β2 nicotinic receptors (nAChRs) capable of enhancing the terminals' spontaneous release of [(3)H]d-aspartate ([(3)H]D-Asp). In rat TCN synaptosomes, spontaneous [(3)H]D-Asp release was increased by nicotine and the nicotinic receptor agonists (±)epibatidine and RJR2403. The increase was potentiated by the positive allosteric modulator of nAChRs LY2087101, inhibited by the nicotinic antagonists mecamylamine (MEC) and dihydro-β-erythroidine hydrobromide (DHβE), and unaffected by α-bungarotoxin (α-BgTx) and methyllycaconitine (MLA). Evidence of functional interaction was observed between the α4β2 nAChRs and cyclothiazide-sensitive, alfa-amino-3-hydroxy-5-methyl-4-isoxazolone propionate (AMPA) receptors co-localized on the TCN synaptosomes. Brief pre-exposure of synaptosomes to 30 μM nicotine or 10 μM RJR2403 abolished the AMPA (100 μM) -induced potentiation of [K(+)]e-evoked [(3)H]D-Asp release, an effect that seems to be caused by nicotine-induced increases in the internalization of AMPA receptors. Indeed, the effects of nicotine-pretreatment were not seen in synaptosomes containing pre-entrapped pep2-SVKI, a peptide known to compete for the binding of GluA2 subunit to scaffolding proteins involved in AMPA endocytosis, while entrapment of pep2-SVKE, an inactive peptide used as negative control, was inefficacious. These findings show that nicotine can negatively modulate the function of AMPA receptors present on glutamatergic nerve terminals in the rat TCN. Dynamic control of AMPA receptors by the nicotinic cholinergic system has been observed under other experimental conditions, and it can contribute to the control of synaptic plasticity such as long-term depression and potentiation. Nicotine's ability to reduce the functionality of presynaptic AMPA receptors could contribute to its analgesic effects by diminishing glutamatergic transmission from the primary afferent terminals that convey nociceptive input to TCN. Published by Elsevier Ltd.


Related Compounds

  • Hydrogen bromide
  • Cyclothiazide
  • Aminomethylphospho...
  • UNII:4956DJR58...
  • Mycophenolic acid

Related Articles:

The protein phosphatase Siw14 controls caffeine-induced nuclear localization and phosphorylation of Gln3 via the type 2A protein phosphatases Pph21 and Pph22 in Saccharomyces cerevisiae.

2015-01-01

[J. Biochem. 157(1) , 53-64, (2015)]

Carbonic anhydrase inhibitors. Inhibition studies with anions and sulfonamides of a new cytosolic enzyme from the scleractinian coral Stylophora pistillata.

2011-01-15

[Bioorg. Med. Chem. Lett. 21 , 710-4, (2011)]

Molecularly imprinted polymers with synthetic dummy template for simultaneously selective removal and enrichment of ginkgolic acids from Ginkgo biloba L. leaves extracts.

2014-11-14

[J. Chromatogr. A. 1368 , 44-51, (2014)]

Design, synthesis and structure-activity relationship studies of novel and diverse cyclooxygenase-2 inhibitors as anti-inflammatory drugs.

2014-12-01

[J. Enzyme Inhib. Med. Chem. 29(6) , 846-67, (2014)]

The effect of curcumin on the brain-gut axis in rat model of irritable bowel syndrome: involvement of 5-HT-dependent signaling.

2015-02-01

[Metab. Brain Dis. 30(1) , 47-55, (2015)]

More Articles...