Synapse 2014-08-01

Genome-wide microarray analysis identifies a potential role for striatal retrograde endocannabinoid signaling in the pathogenesis of experimental L-DOPA-induced dyskinesia.

Yong Wang, Qiao Jun Zhang, Hui Sheng Wang, Tao Wang, Jian Liu

Index: Synapse 68(8) , 332-43, (2014)

Full Text: HTML

Abstract

l-3,4-Dihydroxyphenylalanine (L-DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes L-DOPA-induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non-LID 6-hydroxydopamine-lesioned rats treated with L-DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real-time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non-LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that "long-term depression" and "retrograde endocannabinoid signaling" pathways were downregulated, whereas a set of lipid metabolism-related GO categories and pathways were upregulated in LID rats compared with non-LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid-based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID.© 2014 Wiley Periodicals, Inc.


Related Compounds

  • Hydrogen bromide
  • Benserazide hydroc...
  • Levodopa
  • Desipramine hydroc...
  • L-3,4-Dihydroxyph...

Related Articles:

The protein phosphatase Siw14 controls caffeine-induced nuclear localization and phosphorylation of Gln3 via the type 2A protein phosphatases Pph21 and Pph22 in Saccharomyces cerevisiae.

2015-01-01

[J. Biochem. 157(1) , 53-64, (2015)]

Carbonic anhydrase inhibitors. Inhibition studies with anions and sulfonamides of a new cytosolic enzyme from the scleractinian coral Stylophora pistillata.

2011-01-15

[Bioorg. Med. Chem. Lett. 21 , 710-4, (2011)]

Molecularly imprinted polymers with synthetic dummy template for simultaneously selective removal and enrichment of ginkgolic acids from Ginkgo biloba L. leaves extracts.

2014-11-14

[J. Chromatogr. A. 1368 , 44-51, (2014)]

Design, synthesis and structure-activity relationship studies of novel and diverse cyclooxygenase-2 inhibitors as anti-inflammatory drugs.

2014-12-01

[J. Enzyme Inhib. Med. Chem. 29(6) , 846-67, (2014)]

The effect of curcumin on the brain-gut axis in rat model of irritable bowel syndrome: involvement of 5-HT-dependent signaling.

2015-02-01

[Metab. Brain Dis. 30(1) , 47-55, (2015)]

More Articles...