Sodium vanadium oxide: a new material for high-performance symmetric sodium-ion batteries.
Steffen Hartung, Nicolas Bucher, Vivek Sahadevan Nair, Cheah Yan Ling, Yuxi Wang, Harry E Hoster, Madhavi Srinivasan
Index: ChemPhysChem 15(10) , 2121-8, (2014)
Full Text: HTML
Abstract
Room-temperature sodium-ion batteries have the potential to become the technology of choice for large-scale electrochemical energy storage because of the high sodium abundance and low costs. However, not many materials meet the performance requirements for practical applications. Here, we report a novel sodium-ion battery electrode material, Na(2.55)V(6)O(16)⋅0.6 H(2)O, that shows significant capacities and stabilities at high current rates up to 800 mA g(-1). X-ray photoelectron spectroscopy measurements are carried out to better understand the underlying reactions. Moreover, due to the different oxidation states of vanadium, this material can also be employed in a symmetric full cell, which would decrease production costs even further. For these full cells, capacity and stability tests are conducted using various cathode:anode mass ratios.© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Related Compounds
Related Articles:
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2014-10-01
[J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol. 184(7) , 865-76, (2014)]
2014-12-08
[Biomacromolecules 15(12) , 4561-9, (2014)]
2014-08-07
[Nanoscale 6(15) , 8720-5, (2014)]
2014-01-01
[PeerJ 2 , e284, (2014)]