Granule-mediated release of sphingosine-1-phosphate by activated platelets.
Deepa Jonnalagadda, Manjula Sunkara, Andrew J Morris, Sidney W Whiteheart
Index: Biochim. Biophys. Acta 1841(11) , 1581-9, (2014)
Full Text: HTML
Abstract
Sphingosine-1-phosphate (S1P) is an intracellularly generated bioactive lipid essential for development, vascular integrity, and immunity. These functions are mediated by S1P-selective cell surface G-protein coupled receptors. S1P signaling therefore requires extracellular release of this lipid. Several cell types release S1P and evidence for both plasma membrane transporter-mediated and vesicle-dependent secretion has been presented. Platelets are an important source of S1P and can release it in response to agonists generated at sites of vascular injury. S1P release from agonist-stimulated platelets was measured in the presence of a carrier molecule (albumin) using HPLC-MS/MS. The kinetics and agonist-dependence of S1P release were similar to that of other granule cargo e.g. platelet factor IV (PF4). Agonist-stimulated S1P release was defective in platelets from Unc13d(Jinx) (Munc13-4 null) mice demonstrating a critical role for regulated membrane fusion in this process. Consistent with this observation, platelets efficiently converted fluorescent NBD-sphingosine to its phosphorylated derivative which accumulated in granules. Fractionation of platelet organelles revealed the presence of S1P in both the plasma membrane and in α-granules. Resting platelets contained a second pool of constitutively releasable S1P that was more rapidly labeled by exogenously added sphingosine. Our studies indicate that platelets contain two pools of S1P that are released extracellularly: a readily-exchangeable, metabolically active pool of S1P, perhaps in the plasma membrane, and a granular pool that requires platelet activation and regulated exocytosis for release. Copyright © 2014 Elsevier B.V. All rights reserved.
Related Compounds
Related Articles:
2014-08-01
[Mol. Plant 7(8) , 1365-83, (2014)]
2015-02-11
[J. Neurosci. 35(6) , 2384-97, (2015)]
2014-07-01
[Autophagy 10(7) , 1241-55, (2014)]
2015-01-01
[Nucleic Acids Res. 42(18) , 11433-46, (2014)]
2014-12-20
[Hum. Mol. Genet. 23(25) , 6762-72, (2014)]