Journal of Molecular Biology 2015-03-27

Oligosaccharide and substrate binding in the starch debranching enzyme barley limit dextrinase.

Marie S Møller, Michael S Windahl, Lyann Sim, Marie Bøjstrup, Maher Abou Hachem, Ole Hindsgaul, Monica Palcic, Birte Svensson, Anette Henriksen

Index: J. Mol. Biol. 427(6 Pt B) , 1263-77, (2015)

Full Text: HTML

Abstract

Complete hydrolytic degradation of starch requires hydrolysis of both the α-1,4- and α-1,6-glucosidic bonds in amylopectin. Limit dextrinase (LD) is the only endogenous barley enzyme capable of hydrolyzing the α-1,6-glucosidic bond during seed germination, and impaired LD activity inevitably reduces the maltose and glucose yields from starch degradation. Crystal structures of barley LD and active-site mutants with natural substrates, products and substrate analogues were sought to better understand the facets of LD-substrate interactions that confine high activity of LD to branched maltooligosaccharides. For the first time, an intact α-1,6-glucosidically linked substrate spanning the active site of a LD or pullulanase has been trapped and characterized by crystallography. The crystal structure reveals both the branch and main-chain binding sites and is used to suggest a mechanism for nucleophilicity enhancement in the active site. The substrate, product and analogue complexes were further used to outline substrate binding subsites and substrate binding restraints and to suggest a mechanism for avoidance of dual α-1,6- and α-1,4-hydrolytic activity likely to be a biological necessity during starch synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.


Related Compounds

  • sucrose
  • Mung Bean Nucleas...

Related Articles:

Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6.

2014-08-01

[Mol. Plant 7(8) , 1365-83, (2014)]

G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus.

2015-02-11

[J. Neurosci. 35(6) , 2384-97, (2015)]

Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking.

2014-07-01

[Autophagy 10(7) , 1241-55, (2014)]

SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression.

2015-01-01

[Nucleic Acids Res. 42(18) , 11433-46, (2014)]

Functional screening in Drosophila reveals the conserved role of REEP1 in promoting stress resistance and preventing the formation of Tau aggregates.

2014-12-20

[Hum. Mol. Genet. 23(25) , 6762-72, (2014)]

More Articles...