Journal of Endocrinology 2014-08-01

Hyperinsulinemia induces insulin resistance and immune suppression via Ptpn6/Shp1 in zebrafish.

Rubén Marín-Juez, Susanne Jong-Raadsen, Shuxin Yang, Herman P Spaink

Index: J. Endocrinol. 222(2) , 229-41, (2014)

Full Text: HTML

Abstract

Type 2 diabetes, obesity, and metabolic syndrome are pathologies where insulin resistance plays a central role, and that affect a large population worldwide. These pathologies are usually associated with a dysregulation of insulin secretion leading to a chronic exposure of the tissues to high insulin levels (i.e. hyperinsulinemia), which diminishes the concentration of key downstream elements, causing insulin resistance. The complexity of the study of insulin resistance arises from the heterogeneity of the metabolic states where it is observed. To contribute to the understanding of the mechanisms triggering insulin resistance, we have developed a zebrafish model to study insulin metabolism and its associated disorders. Zebrafish larvae appeared to be sensitive to human recombinant insulin, becoming insulin-resistant when exposed to a high dose of the hormone. Moreover RNA-seq-based transcriptomic profiling of these larvae revealed a strong downregulation of a number of immune-relevant genes as a consequence of the exposure to hyperinsulinemia. Interestingly, as an exception, the negative immune modulator protein tyrosine phosphatase nonreceptor type 6 (ptpn6) appeared to be upregulated in insulin-resistant larvae. Knockdown of ptpn6 was found to counteract the observed downregulation of the immune system and insulin signaling pathway caused by hyperinsulinemia. These results indicate that ptpn6 is a mediator of the metabolic switch between insulin-sensitive and insulin-resistant states. Our zebrafish model for hyperinsulinemia has therefore demonstrated its suitability for discovery of novel regulators of insulin resistance. In addition, our data will be very useful in further studies of the function of immunological determinants in a non-obese model system. © 2014 Society for Endocrinology.


Related Compounds

  • sodium chloride
  • SODIUM CHLOR...
  • Tricaine

Related Articles:

Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6.

2014-08-01

[Mol. Plant 7(8) , 1365-83, (2014)]

Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.

2014-12-11

[Oncogene 33(50) , 5688-96, (2014)]

Functional consequence of the MET-T1010I polymorphism in breast cancer.

2015-02-20

[Oncotarget 6(5) , 2604-14, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells.

2015-04-01

[J. Pineal Res. 58(3) , 310-20, (2015)]

More Articles...