Evaluation of hot-melt extrusion and injection molding for continuous manufacturing of immediate-release tablets.
Alice Melocchi, Giulia Loreti, Maria Dorly Del Curto, Alessandra Maroni, Andrea Gazzaniga, Lucia Zema
Index: J. Pharm. Sci. 104 , 1971-80, (2015)
Full Text: HTML
Abstract
The exploitation of hot-melt extrusion and injection molding for the manufacturing of immediate-release (IR) tablets was preliminarily investigated in view of their special suitability for continuous manufacturing, which represents a current goal of pharmaceutical production because of its possible advantages in terms of improved sustainability. Tablet-forming agents were initially screened based on processability by single-screw extruder and micromolding machine as well as disintegration/dissolution behavior of extruded/molded prototypes. Various polymers, such as low-viscosity hydroxypropylcellulose, polyvinyl alcohol, polyvinyl alcohol-polyethylene glycol graft copolymer, various sodium starch glycolate grades (e.g., Explotab(®) CLV) that could be processed with no need for technological aids, except for a plasticizer, were identified. Furthermore, the feasibility of both extruded and molded IR tablets from low-viscosity hydroxypropylcellulose or Explotab(®) CLV was assessed. Explotab(®) CLV, in particular, showed thermoplastic properties and a very good aptitude as a tablet-forming agent, starting from which disintegrating tablets were successfully obtained by either techniques. Prototypes containing a poorly soluble model drug (furosemide), based on both a simple formulation (Explotab(®) CLV and water/glycerol as plasticizers) and formulations including dissolution/disintegration adjuvants (soluble and effervescent excipients) were shown to fulfill the USP 37 dissolution requirements for furosemide tablets.© 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Related Compounds
Related Articles:
2014-08-01
[Mol. Plant 7(8) , 1365-83, (2014)]
2014-12-11
[Oncogene 33(50) , 5688-96, (2014)]
2015-02-20
[Oncotarget 6(5) , 2604-14, (2015)]
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-01
[J. Pineal Res. 58(3) , 310-20, (2015)]