Journal of Medicinal Food 2015-05-01

Myricetin inhibits the release of glutamate in rat cerebrocortical nerve terminals.

Yi Chang, Chia-Ying Chang, Su-Jane Wang, Shu-Kuei Huang

Index: J. Med. Food 18 , 516-23, (2015)

Full Text: HTML

Abstract

The excessive release of glutamate is a critical element in the neuropathology of acute and chronic brain disorders. The purpose of the present study was to investigate the effect and possible mechanism of myricetin, a naturally occurring flavonoid with a neuroprotective profile, on endogenous glutamate release in the nerve terminals (synaptosomes) of the rat cerebral cortex. The release of glutamate was evoked by the K(+) channel blocker 4-aminopyridine (4-AP) and measured by one-line enzyme-coupled fluorometric assay. We also used a membrane potential-sensitive dye to assay the synaptosomal plasma membrane potential, and a Ca(2+) indicator Fura-2 to monitor cytosolic Ca(2+) concentrations ([Ca(2+)]C). Results show that myricetin inhibited 4-AP-evoked glutamate release, and this effect was prevented by chelating extracellular Ca(2+) ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor dl-threo-beta-benzyl-oxyaspartate had no effect on myricetin action. Myricetin did not alter the synaptosomal membrane potential, but decreased 4-AP-induced increases in the cytosolic free Ca(2+) concentration. Furthermore, the myricetin effect on 4-AP-evoked glutamate release was prevented by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but not by blocking intracellular Ca(2+) release. These results suggest that myricetin inhibits glutamate release from cerebrocortical synaptosomes by attenuating voltage-dependent Ca(2+) entry. This implies that the inhibition of glutamate release is an important pharmacological activity of myricetin that may play a critical role in the apparent clinical efficacy of this compound.


Related Compounds

  • sodium chloride
  • SodiuM bicarbonat...
  • Myricetin
  • SODIUM CHLOR...
  • DiSC3(5)
  • BAPTA

Related Articles:

Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6.

2014-08-01

[Mol. Plant 7(8) , 1365-83, (2014)]

Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.

2014-12-11

[Oncogene 33(50) , 5688-96, (2014)]

Functional consequence of the MET-T1010I polymorphism in breast cancer.

2015-02-20

[Oncotarget 6(5) , 2604-14, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells.

2015-04-01

[J. Pineal Res. 58(3) , 310-20, (2015)]

More Articles...