Biofabrication 2015-01-01

3D printing of HEK 293FT cell-laden hydrogel into macroporous constructs with high cell viability and normal biological functions.

Liliang Ouyang, Rui Yao, Xi Chen, Jie Na, Wei Sun

Index: Biofabrication 7(1) , 015010, (2015)

Full Text: HTML

Abstract

3D printing has evolved into a versatile technology for fabricating tissue-engineered constructs with spatially controlled cells and biomaterial distribution to allow biomimicking of in vivo tissues. In this paper, we reported a novel study of 3D printing of cell lines derived from human embryonic kidney tissue into a macroporous tissue-like construct. Nozzle temperature, chamber temperature and the composition of the matrix material were studied to achieve high cell viability (>90%) after 3D printing and construct formation. Long-term construct stability with a clear grid structure up to 30 days was observed. Cells continued to grow as cellular spheroids with strong cell-cell interactions. Two transfected cell lines of HEK 293FT were also 3D printed and showed normal biological functions, i.e. protein synthesis and gene activation in responding to small molecule stimulus. With further refinement, this 3D cell printing technology may lead to a practical fabrication of functional embryonic tissues in vitro.


Related Compounds

  • sodium chloride
  • Sodium alginate
  • SODIUM CHLOR...
  • Calcein-AM
  • Gelatin
  • Tris(2-methyl-2-pr...
  • Propidium Iodide
  • Heparin sodium

Related Articles:

Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6.

2014-08-01

[Mol. Plant 7(8) , 1365-83, (2014)]

Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.

2014-12-11

[Oncogene 33(50) , 5688-96, (2014)]

Functional consequence of the MET-T1010I polymorphism in breast cancer.

2015-02-20

[Oncotarget 6(5) , 2604-14, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells.

2015-04-01

[J. Pineal Res. 58(3) , 310-20, (2015)]

More Articles...