Journal Of Tissue Engineering And Regenerative Medicine 2015-11-01

SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair.

Šárka Kubinová, Daniel Horák, Aleš Hejčl, Zdeněk Plichta, Jiří Kotek, Vladimír Proks, Serhiy Forostyak, Eva Syková

Index: J. Tissue Eng. Regen. Med. 9 , 1298-309, (2015)

Full Text: HTML

Abstract

The architecture and mechanical properties of a scaffold for spinal cord injury treatment must provide tissue integration as well as effective axonal regeneration. Previous work has demonstrated the cell-adhesive and growth-promoting properties of the SIKVAV (Ser-Ile-Lys-Val-Ala-Val)-modified highly superporous poly(2-hydroxethyl methacrylate) (PHEMA) hydrogels. The aim of the current study was to optimize the porosity and mechanical properties of this type of hydrogel in order to develop a suitable scaffold for the repair of spinal cord tissue. Three types of highly superporous PHEMA hydrogels with oriented pores of ~60 µm diameter, porosities of 57-68% and equivalent stiffness characterized by elasticity moduli in the range 3-45 kPa were implanted into a spinal cord hemisection, and their integration into the host tissue, as well as the extent of axonal ingrowth into the scaffold pores, were histologically evaluated. The best tissue response was found with a SIKVAV-modified PHEMA hydrogel with 68% porosity and a moderate modulus of elasticity (27 kPa in the direction along the pores and 3.6 kPa in the perpendicular direction). When implanted into a spinal cord transection, the hydrogel promoted tissue bridging as well as aligned axonal ingrowth. In conclusion, a prospective oriented scaffold architecture of SIKVAV-modified PHEMA hydrogels has been developed for spinal cord injury repair; however, to develop an effective treatment for spinal cord injury, multiple therapeutic approaches are needed.Copyright © 2013 John Wiley & Sons, Ltd.


Related Compounds

  • Imidazole
  • 2,2'-Azobis(2-meth...
  • Phenylacetic acid
  • Triton X-100
  • 4',6-Diamidino-2-p...
  • 2,2′-Dipyridyl di...
  • Hexafluoroisopropa...

Related Articles:

A small molecule targeting ALK1 prevents Notch cooperativity and inhibits functional angiogenesis.

2015-04-01

[Angiogenesis 18(2) , 209-17, (2015)]

Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237) on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway.

2015-01-01

[Drug Des. Devel. Ther. 9 , 1555-84, (2015)]

Analysis of cytochrome P450 CYP119 ligand-dependent conformational dynamics by two-dimensional NMR and X-ray crystallography.

2015-04-17

[J. Biol. Chem. 290(16) , 10000-17, (2015)]

An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence.

2015-02-17

[Proc. Natl. Acad. Sci. U. S. A. 112(7) , E747-56, (2015)]

Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes.

2014-07-01

[Nucleic Acids Res. 42(13) , 8635-47, (2014)]

More Articles...