Materials Science and Engineering: C 2014-07-01

Synthesis of 45S5 Bioglass® via a straightforward organic, nitrate-free sol-gel process.

Ehsan Rezabeigi, Paula M Wood-Adams, Robin A L Drew

Index: Mater. Sci. Eng. C. Mater. Biol. Appl. 40 , 248-52, (2014)

Full Text: HTML

Abstract

More than four decades after the discovery of 45S5 Bioglass® as the first bioactive material, this composition is still one of the most promising materials in the tissue engineering field. Sol-gel-derived bioactive glasses generally possess improved properties over other bioactive glasses, because of their highly porous microstructure and unique surface chemistry which accelerate hydroxyapatite formation. In the current study, a new combination of precursors with lactic acid as the hydrolysis catalyst have been employed to design an organic, nitrate-free sol-gel procedure for synthesizing of 45S5 Bioglass®. This straightforward route is able to produce fully amorphous submicron particles of this glass with an appropriately high specific surface area on the order of ten times higher than that of the melt-derived glasses. These characteristics are expected to lead to rapid hydroxyapatite formation and consequently more efficient bone bonding.Copyright © 2014 Elsevier B.V. All rights reserved.


Related Compounds

  • Ethanol
  • UNII:4FM1N296C...
  • Tetraethyl orthosi...
  • Sodium Lactate

Related Articles:

Genetic and pharmacologic inhibition of eIF4E reduces breast cancer cell migration, invasion, and metastasis.

2015-03-15

[Cancer Res. 75(6) , 1102-12, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells.

2015-04-22

[J. Ethnopharmacol. 164 , 265-72, (2015)]

Improved ethanol tolerance and ethanol production from glycerol in a streptomycin-resistant Klebsiella variicola mutant obtained by ribosome engineering.

2015-01-01

[Bioresour. Technol. 176 , 156-62, (2014)]

Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.

2014-12-08

[Biomacromolecules 15(12) , 4561-9, (2014)]

More Articles...