Autonomic and Autacoid Pharmacology 2013-04-01

Tramadol inhibits the contractility of isolated human myometrium.

N H Shah, E Thomas, R Jose, J Peedicayil

Index: Auton. Autacoid Pharmacol. 33(1-2) , 1-5, (2013)

Full Text: HTML

Abstract

This study was conducted to determine whether the atypical opioid analgesic tramadol inhibits the contractility of isolated non-pregnant human myometrium. Ten strips of non-pregnant human myometrium stimulated with 55 mm potassium chloride (KCl) were treated with three concentrations (30, 100 and 300 μm) of tramadol to test for any inhibitory effect of tramadol. The effects of concurrent administration of the ß adrenoceptor antagonist propranolol (1 μm), the guanylyl cyclase and nitric oxide synthase inhibitor methylene blue (20 μm) and the opioid receptor antagonist naloxone (100 μm) with tramadol were also studied. Tramadol caused a concentration-dependent inhibition of KCl-induced myometrial contractility, which was statistically significant at all three concentrations of tramadol used. Propranolol significantly reversed the inhibitory effect of 100 μm tramadol on KCl-induced myometrial contractility but not that of 300 μm tramadol. Neither methylene blue nor naloxone reversed the inhibitory effect of tramadol on KCl-induced myometrial contractility. These results suggest that tramadol inhibits KCl-induced contractility of isolated human myometrium. They also suggest that tramadol relaxes the myometrium due to stimulation of ß1 adrenoceptors. However, the concentrations of tramadol required to relax the myometrium were high and likely to be attained at toxic doses, rather than therapeutic doses, of tramadol.© 2013 Blackwell Publishing Ltd.


Related Compounds

  • Methylene Blue
  • potassium chloride
  • Naloxone hydrochlo...
  • Isoprenaline hydro...

Related Articles:

Organization of pontine reticulospinal inputs to motoneurons controlling axial and limb muscles in the neonatal mouse.

2014-10-01

[J. Neurophysiol. 112(7) , 1628-43, (2014)]

High-throughput fluorescence-based screening assays for tryptophan-catabolizing enzymes.

2014-10-01

[J. Biomol. Screen. 19(9) , 1266-74, (2014)]

Cytochrome C reacts with cholesterol hydroperoxides to produce lipid- and protein-derived radicals.

2015-05-12

[Biochemistry 54 , 2841-50, (2015)]

Minimal detection of nuclear mutations in XP-V and normal cells treated with oxidative stress inducing agents.

2014-12-01

[J. Biochem. Mol. Toxicol. 28(12) , 568-77, (2014)]

In Vitro Protective Effect and Antioxidant Mechanism of Resveratrol Induced by Dapsone Hydroxylamine in Human Cells.

2015-01-01

[PLoS ONE 10 , e0134768, (2015)]

More Articles...