Journal of Nanoscience and Nanotechnology 2015-09-01

Effect of Green Tea Extract Encapsulated Into Chitosan Nanoparticles on Hepatic Fibrosis Collagen Fibers Assessed by Atomic Force Microscopy in Rat Hepatic Fibrosis Model.

Abdel-Majeed A Safer, Nomany A Hanafy, Dhruba J Bharali, Huadong Cui, Shaker A Mousa

Index: J. Nanosci. Nanotechnol. 15 , 6452-9, (2015)

Full Text: HTML

Abstract

The present study examined the effect of Green Tea Extract (GTE) encapsulated into Chitosan Nanoparticles (CS-NPs) on hepatic fibrosis in rat model as determined by atomic force microscopy (AFM). The bioactive compounds in GTE encapsulated into CS-NPs were determined using LC-MS/MS method. Additionally, the uptake of GTE-CS NPs in HepG2 cells showed enhanced uptake. In experimental fibrosis model, AFM was used as a high resolution microscopic tool to investigate collagen fibers as an indicator of hepatic fibrosis induced by treatment with CCl4. Paraffin sections of fibrotic liver tissues caused by CC4 treatment of rats and the effect of GTE-CS NPs treatment with or without CCl4 on hepatic fibrosis were examined. Liver tissues from the different groups of animals were de-waxed and processed as for normal H/E staining and Masson's trichrome staining to locate the proper area of ECM collagen in the CCl4 group versus collagen in liver tissues treated with the GTE-CS NPs with or without CCl4. Selected areas of paraffin sections were trimmed off and fixed flat on top of mica and inserted in the AFM stage. H/E staining, Masson's trichrome stained slides, and AFM images revealed that collagen fibers of 250 to 300 nm widths were abundant in the fibrotic liver samples while those of GTE-CS NPs were clear as in the control group. Data confirmed the hypothesis that GTE-CS NPs are effective in removing all the extracellular collagen caused by CCl4 in the hepatic fibrosis rat liver.


Related Compounds

  • Diethyl ether
  • Formaldehyde
  • ethane-1,2-diamini...

Related Articles:

Process development for scum to biodiesel conversion.

2015-06-01

[Bioresour. Technol. 185 , 185-93, (2015)]

Biocompatible, biodegradable and porous liquid crystal elastomer scaffolds for spatial cell cultures.

2015-02-01

[Macromol. Biosci. 15(2) , 200-14, (2015)]

Study on the phase I metabolism of novel synthetic cannabinoids, APICA and its fluorinated analogue.

2015-02-01

[Drug Test. Anal. 7(2) , 131-42, (2015)]

Bioadhesive emulsions for control release of progesterone resistant to vaginal fluids clearance.

2014-12-30

[Int. J. Pharm. 477(1-2) , 495-505, (2014)]

Development of antibodies for determination of alkylresorcinol metabolites in human urine and elucidation of ELISA cross-reactivity.

2014-11-01

[J. Immunol. Methods 413 , 12-24, (2014)]

More Articles...