DNA-PKcs plays role in cancer metastasis through regulation of secreted proteins involved in migration and invasion.
Ewa Kotula, Nathalie Berthault, Celine Agrario, Marie-Christine Lienafa, Anthony Simon, Florent Dingli, Damarys Loew, Vonick Sibut, Simon Saule, Marie Dutreix
Index: Cell Cycle 14 , 1961-72, (2015)
Full Text: HTML
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a major role in DNA damage signaling and repair and is also frequently overexpressed in tumor metastasis. We used isogenic cell lines expressing different levels of DNA-PKcs to investigate the role of DNA-PKcs in metastatic development. We found that DNA-PKcs participates in melanoma primary tumor and metastasis development by stimulating angiogenesis, migration and invasion. Comparison of conditioned medium content from DNA-PKcs-proficient and deficient cells reveals that DNA-PKcs controls secretion of at least 103 proteins (including 44 metastasis-associated with FBLN1, SERPINA3, MMP-8, HSPG2 and the inhibitors of matrix metalloproteinases, such as α-2M and TIMP-2). High throughput analysis of secretomes, proteomes and transcriptomes, indicate that DNA-PKcs regulates the secretion of 85 proteins without affecting their gene expression. Our data demonstrate that DNA-PKcs has a pro-metastatic activity via the modification of the tumor microenvironment. This study shows for the first time a direct link between DNA damage repair and cancer metastasis and highlights the importance of DNA-PKcs as a potential target for anti-metastatic treatment.
Related Compounds
Related Articles:
2014-12-01
[Tissue Eng. Part A 20(23-24) , 3163-75, (2014)]
2015-02-04
[J. Neurosci. 35(5) , 1999-2014, (2015)]
2014-12-01
[Biochem. Pharmacol. 92(3) , 467-75, (2014)]
2014-12-01
[J. Virol. 88(23) , 13669-77, (2014)]
2014-12-20
[FEBS Lett. 588(24) , 4784-90, (2014)]