Journal of Agricultural and Food Chemistry 2015-08-05

Identification of Echinacoside Metabolites Produced by Human Intestinal Bacteria Using Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry.

Yang Li, Guisheng Zhou, Shihua Xing, Pengfei Tu, Xiaobo Li

Index: J. Agric. Food Chem. 63 , 6764-71, (2015)

Full Text: HTML

Abstract

Echinacoside (ECH) is one of the representative phenylethanoid glycosides. It is widely present in plants and exhibits various bioactivities. However, the extremely low oral bioavailability of ECH in rats implies that ECH may go through multiple hydrolysis steps in the gastrointestinal tract prior to its absorption into the blood. Therefore, the gastrointestinal metabolites of ECH are more likely to be the bioactive components. This study established an approach combining ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) with MS(E) technology and MetaboLynx software for rapid analysis of the ECH metabolic profile produced by human intestinal bacteria. As a result, 13 ECH metabolites and 5 possible metabolic pathways (including deglycosylation, dehydroxylation, reduction, hydroxylation, and acetylation) were identified. Furthermore, hydroxytyrosol (HT) and 3-hydroxyphenylpropionic acid (3-HPP) were found to be the two bioactive metabolites of ECH produced by human intestinal bacteria.


Related Compounds

  • Acetonitrile
  • Hydrocinnamic acid
  • Caffeic acid
  • 3,4-Dihydroxyhydro...

Related Articles:

Neuroprotective effect of modified Chungsimyeolda-tang, a traditional Korean herbal formula, via autophagy induction in models of Parkinson's disease.

2015-01-15

[J. Ethnopharmacol. 159 , 93-101, (2014)]

Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: instrumentation, matrix enhancement, and single cell analysis.

2014-11-01

[J. Am. Soc. Mass Spectrom. 25(11) , 1897-907, (2014)]

Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking.

2014-07-01

[Autophagy 10(7) , 1241-55, (2014)]

Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites.

2015-01-01

[Arch. Toxicol. 89(1) , 107-19, (2015)]

Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein.

2014-12-01

[Biochim. Biophys. Acta 1842(12 Pt A) , 2345-56, (2014)]

More Articles...