Journal of Pharmaceutical and Biomedical Analysis 2014-09-01

Molecularly imprinted polymer for specific extraction of hypericin from Hypericum perforatum L. herbal extract.

Zhaozhou Li, Cuili Qin, Daomin Li, Yuze Hou, Songbiao Li, Junjie Sun

Index: J. Pharm. Biomed. Anal. 98 , 210-20, (2014)

Full Text: HTML

Abstract

The molecularly imprinted polymers (MIPs) were prepared by an oxidation-reduction polymerization system using a non-covalent molecularly imprinting strategy with hypericin as the template, acrylamide as the functional monomer and pentaerythritol triacrylate as the cross-linker in the porogen of acetone. The UV spectrum revealed that a cooperative hydrogen-bonding complex between hypericin and acrylamide might be formed at the ratio of 1:6 in the prepolymerized system. Two classes of the binding sites were produced in the resulting hypericin-imprinted polymer with the dissociation constants of 16.61μgL(-1) and 69.35μgL(-1), and the affinity binding sites of 456.53μgg(-1) and 603.06μgg(-1), respectively. The synthesized MIPs were characterized by scanning electron microscope, thermogravimetric and differential thermal analysis. High-performance liquid chromatography was used to investigate the adsorption and recognition properties of the MIPs. Selective binding of the template molecule was demonstrated in comparison to the analog pseudohypericin. After the Hypericum perforatum L. plant being air dried and finely ground, an extract was prepared by shaking the powder in a methanol-water solution (80:20, v/v), vacuum filtration though a Büchner funnel, liquid-liquid extraction with ethyl ether and ethyl acetate, and evaporating on a rotary evaporator until dry. With the sorbents of the optimized MIPs, a molecularly imprinted solid-phase extraction (MISPE) procedure was developed for enrichment and separation of hypericin from the Hypericum extract in the presence of interfering substances. The selective extraction of hypericin from herbal medicine was achieved with the recovery of 82.30%. The results showed that MISPE can be a useful tool for specific isolation and effective clean-up of target compounds from natural products. Copyright © 2014 Elsevier B.V. All rights reserved.


Related Compounds

  • Acetonitrile
  • Methanol
  • acetic acid
  • Benzoyl peroxide
  • Stanolone
  • N,N-Dimethylanili...
  • acetic acid

Related Articles:

Neuroprotective effect of modified Chungsimyeolda-tang, a traditional Korean herbal formula, via autophagy induction in models of Parkinson's disease.

2015-01-15

[J. Ethnopharmacol. 159 , 93-101, (2014)]

Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: instrumentation, matrix enhancement, and single cell analysis.

2014-11-01

[J. Am. Soc. Mass Spectrom. 25(11) , 1897-907, (2014)]

Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking.

2014-07-01

[Autophagy 10(7) , 1241-55, (2014)]

Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites.

2015-01-01

[Arch. Toxicol. 89(1) , 107-19, (2015)]

Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein.

2014-12-01

[Biochim. Biophys. Acta 1842(12 Pt A) , 2345-56, (2014)]

More Articles...