Analytica Chimica Acta 2015-05-22

Gold nanoparticle-enhanced target (AuNPET) as universal solution for laser desorption/ionization mass spectrometry analysis and imaging of low molecular weight compounds.

Justyna Sekuła, Joanna Nizioł, Wojciech Rode, Tomasz Ruman

Index: Anal. Chim. Acta 875 , 61-72, (2015)

Full Text: HTML

Abstract

Preparation is described of a durable surface of cationic gold nanoparticles (AuNPs), covering commercial and custom-made MALDI targets, along with characterization of the nanoparticle surface properties and examples of the use in MS analyses and MS imaging (IMS) of low molecular weight (LMW) organic compounds. Tested compounds include nucleosides, saccharides, amino acids, glycosides, and nucleic bases for MS measurements, as well as over one hundred endogenous compounds in imaging experiment. The nanoparticles covering target plate were enriched in sodium in order to promote sodium-adduct formation. The new surface allows fast analysis, high sensitivity of detection and high mass determination accuracy. Example of application of new Au nanoparticle-enhanced target for fast and simple MS imaging of a fingerprint is also presented.Copyright © 2015 Elsevier B.V. All rights reserved.


Related Compounds

  • Acetonitrile
  • 9-methyluric acid

Related Articles:

Neuroprotective effect of modified Chungsimyeolda-tang, a traditional Korean herbal formula, via autophagy induction in models of Parkinson's disease.

2015-01-15

[J. Ethnopharmacol. 159 , 93-101, (2014)]

Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: instrumentation, matrix enhancement, and single cell analysis.

2014-11-01

[J. Am. Soc. Mass Spectrom. 25(11) , 1897-907, (2014)]

Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking.

2014-07-01

[Autophagy 10(7) , 1241-55, (2014)]

Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites.

2015-01-01

[Arch. Toxicol. 89(1) , 107-19, (2015)]

Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein.

2014-12-01

[Biochim. Biophys. Acta 1842(12 Pt A) , 2345-56, (2014)]

More Articles...