PLoS ONE 2011-01-01

Simultaneous visualization of both signaling cascade activity and end-point gene expression in single cells.

Irene Weibrecht, Ida Grundberg, Mats Nilsson, Ola Söderberg

Index: PLoS ONE 6(5) , e20148, (2011)

Full Text: HTML

Abstract

We have developed an approach for simultaneous detection of individual endogenous protein modifications and mRNA molecules in single cells in situ. For this purpose we combined two methods previously developed in our lab: in situ proximity ligation assay for the detection of individual protein interactions and -modifications and in situ detection of single mRNA molecules using padlock probes. As proof-of-principle, we demonstrated the utility of the method for simultaneous detection of phosphorylated PDGFRβ and DUSP6/MKP-3 mRNA molecules in individual human fibroblasts upon PDGF-BB stimulation. Further we applied drugs disrupting the PDGFRβ signaling pathway at various sites to show that this combined method can concurrently monitor the molecular effect of the drugs, i.e. inhibition of downstream signaling from the targeted node in the signaling pathway. Due to its ability to detect different types of molecules in single cells in situ the method presented here can contribute to a deeper understanding of cell-to-cell variations and can be applied to e.g. pinpoint effector sites of drugs in a signaling pathway.


Related Compounds

  • Paraformaldehyde
  • L-cysteine
  • Glycerol
  • N-Succinimidyl 4-...

Related Articles:

RESOLFT nanoscopy with photoswitchable organic fluorophores.

2015-01-01

[Sci. Rep. 5 , 17804, (2015)]

An optimized method to process mouse CNS to simultaneously analyze neural cells and leukocytes by flow cytometry.

2015-05-30

[J. Neurosci. Methods 247 , 23-31, (2015)]

Rapid titration of measles and other viruses: optimization with determination of replication cycle length.

2011-01-01

[PLoS ONE 6 , e24135, (2011)]

Human dendritic cells infected with an adenoviral vector suppress proliferation of autologous and allogeneic T cells.

2008-12-01

[Immunology 125(4) , 469-79, (2008)]

Formation, Accumulation, and Hydrolysis of Endogenous and Exogenous Formaldehyde-Induced DNA Damage.

2015-07-01

[Toxicol. Sci. 146 , 170-82, (2015)]

More Articles...