Nonmarrow hematopoiesis occurs in a hyaluronic-acid-rich node and duct system in mice.
Sunhee Hwang, Seung J Lee, Sang H Park, Brahmananda R Chitteti, Edward F Srour, Scott Cooper, Giao Hangoc, Hal E Broxmeyer, Byoung S Kwon
Index: Stem Cells Dev. 23(21) , 2661-71, (2014)
Full Text: HTML
Abstract
A hyaluronic-acid-rich node and duct system (HAR-NDS) was found on the surface of internal organs of mice, and inside their blood and lymph vessels. The nodes (HAR-Ns) were filled with immune cells of the innate system and were especially enriched with mast cells and histiocytes. They also contained hematopoietic progenitor cells (HPCs), such as granulocyte-macrophage, erythroid, multipotential progenitors, and mast cell progenitors (MCPs). MCPs were the most abundant among the HPCs in HAR-Ns. Their frequency was fivefold higher than that of the MCPs in bone marrow. In addition, the system contained pluripotent stem cells (PSCs) capable of producing CD45(-)Flk1(+) hemangioblast-like cells, which subsequently generated various types of HPCs and differentiated blood cells. Although HAR-Ns did not appear to harbor enough number of cells capable of long-term reconstitution or short-term radioprotection of lethally irradiated recipients, bone marrow cells were able to engraft in the HAR-NDS and reconstitute hematopoietic potentials of the system. PSCs and HPCs were consistently found in intravenous, intralymphatic, and intestinal HAR-ND. We infer that PSCs and HPCs reside in the HAR-ND and that this novel system may serve as an alternative means to traffic immature and mature blood cells throughout the body.
Related Compounds
Related Articles:
2015-03-01
[Stroke 46(3) , 835-42, (2015)]
2014-01-01
[Int. J. Nanomedicine 9 , 2815-32, (2014)]
2014-12-01
[Am. J. Pathol. 184(12) , 3249-61, (2014)]
2015-02-20
[Biochem. Biophys. Res. Commun. 457(4) , 532-7, (2015)]
2015-01-01
[Biomed Mater Eng 25(2) , 203-12, (2015)]