Quantitative activation suppression assay to evaluate human bone marrow-derived mesenchymal stromal cell potency.
Bahey Salem, Samantha Miner, Nancy F Hensel, Minoo Battiwalla, Keyvan Keyvanfar, David F Stroncek, Adrian P Gee, Patrick J Hanley, Catherine M Bollard, Sawa Ito, A John Barrett
Index: Cytotherapy 17 , 1675-86, (2015)
Full Text: HTML
Abstract
With the increasing use of cell therapies involving immune modulatory cells, there is a need for a simple standardized method to evaluate and compare the suppressive potency of different cell products. We used the Karpas 299 (K299) cell line as the reference suppressor cell to develop a standardized suppression assay to quantify the immune-modulatory capacity of bone marrow-derived mesenchymal stromal cells (BM-MSCs).Healthy donor CD4 T cells were co-cultured with the K299 cell line or with third-party BM-MSCs. After stimulation with anti-CD3/CD28 beads, CD154 activation and proliferation of CD4 T cells were measured to calculate suppression.The K299 cell line reproducibly suppressed both the activation and proliferation of healthy donor CD4 T cells in a dose-dependent manner. A rapid (16-h) assay that was based on activation-suppression was selected for development. In replicate testing, there was an inherent variability of suppression of 11% coefficient of variation between different responder T cells. Suppression by BM-MSCs on different responders correlated with suppression by K299. We therefore used K299 suppression as the reference to define suppression potency of BM-MSCs in K299 Suppression Units. We found that inter-donor variability, passage number, method of manufacture and exposure of BM-MSCs to steroids or interferon-γ all affected BM-MSC potency of suppression.This method provides a platform for standardizing suppressor function to facilitate comparisons between laboratories and for use as a cell product release assay.Published by Elsevier Inc.
Related Compounds
Related Articles:
2015-03-01
[Stroke 46(3) , 835-42, (2015)]
2014-01-01
[Int. J. Nanomedicine 9 , 2815-32, (2014)]
2014-12-01
[Am. J. Pathol. 184(12) , 3249-61, (2014)]
2015-02-20
[Biochem. Biophys. Res. Commun. 457(4) , 532-7, (2015)]
2015-01-01
[Biomed Mater Eng 25(2) , 203-12, (2015)]