Nucleic Acids Research 2014-01-01

Resveratrol and EGCG bind directly and distinctively to miR-33a and miR-122 and modulate divergently their levels in hepatic cells.

Laura Baselga-Escudero, Cinta Blade, Aleix Ribas-Latre, Ester Casanova, Manuel Suárez, Josep Lluís Torres, M Josepa Salvadó, Lluis Arola, Anna Arola-Arnal

Index: Nucleic Acids Res. 42 , 882-92, (2014)

Full Text: HTML

Abstract

Modulation of miR-33 and miR-122 has been proposed to be a promising strategy to treat dyslipidemia and insulin resistance associated with obesity and metabolic syndrome. Interestingly, specific polyphenols reduce the levels of these mi(cro)RNAs. The aim of this study was to elucidate the effect of polyphenols of different chemical structure on miR-33a and miR-122 expression and to determine whether direct binding of the polyphenol to the mature microRNAs (miRNAs) is a plausible mechanism of modulation. The effect of two grape proanthocyanidin extracts, their fractions and pure polyphenol compounds on miRNA expression was evaluated using hepatic cell lines. Results demonstrated that the effect on miRNA expression depended on the polyphenol chemical structure. Moreover, miR-33a was repressed independently of its host-gene SREBP2. Therefore, the ability of resveratrol and epigallocatechin gallate to bind miR-33a and miR-122 was measured using (1)H NMR spectroscopy. Both compounds bound miR-33a and miR-122 and differently. Interestingly, the nature of the binding of these compounds to the miRNAs was consistent with their effects on cell miRNA levels. Therefore, the specific and direct binding of polyphenols to miRNAs emerges as a new posttranscriptional mechanism by which polyphenols could modulate metabolism.


Related Compounds

  • 3-Hydroxyphenylace...
  • ProcyanidinB2

Related Articles:

A metabolite profiling approach to identify biomarkers of flavonoid intake in humans.

2009-12-01

[J. Nucl. Med. 139 , 2309-14, (2009)]

Development of a targeted method for twenty-three metabolites related to polyphenol gut microbial metabolism in biological samples, using SPE and UHPLC-ESI-MS/MS.

2014-10-01

[Talanta 128 , 221-30, (2014)]

Sensitive and Rapid UHPLC-MS/MS for the Analysis of Tomato Phenolics in Human Biological Samples.

2015-01-01

[Molecules 20 , 20409-25, (2015)]

Lack of tissue accumulation of grape seed flavanols after daily long-term administration in healthy and cafeteria-diet obese rats.

2015-11-18

[J. Agric. Food Chem. 63 , 9996-10003, (2015)]

Rapid diagnosis of phenylketonuria and other aminoacidemias by quantitative analysis of amino acids in neonatal blood spots by gas chromatography-mass spectrometry.

2002-07-25

[J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 775(1) , 115-20, (2002)]

More Articles...