Journal of Agricultural and Food Chemistry 2015-08-12

Tyrosinase-Catalyzed Hydroxylation of 4-Hexylresorcinol, an Antibrowning and Depigmenting Agent: A Kinetic Study.

Carmen Vanessa Ortiz-Ruiz, Jose Berna, Jose Neptuno Rodriguez-Lopez, Virginia Tomas, Francisco Garcia-Canovas

Index: J. Agric. Food Chem. 63 , 7032-40, (2015)

Full Text: HTML

Abstract

4-Hexylresorcinol (HR) is a compound used in the food and cosmetic industries as an antibrowning and lightening agent. Its use is mainly attributed to its inhibitory effect on the enzyme tyrosinase. However, the enzyme hydroxylates HR to an o-diphenol, which it then oxidizes to an o-quinone, which rapidly isomerizes to p-quinone. For tyrosinase to act in this way, the Eox form (oxy-tyrosinase) must be present in the reaction medium, which can be brought about by (a) hydrogen peroxide, (b) ascorbic acid, or (c) catalytic concentrations of o-diphenol and a reductant (NADH) to maintain it constant. This work demonstrates that HR is a substrate of tyrosinase and proposes a mechanism for its action. Its kinetic characterization provides a catalytic constant of 0.85 ± 0.04 s(-1) and a Michaelis constant of 60.31 ± 6.73 μM.


Related Compounds

  • Hydrogen peroxide
  • Adenine
  • Ascorbic acid
  • Levodopa
  • 4-Hexylresorcinol

Related Articles:

Neuropeptide Y in the noradrenergic neurones induces obesity and inhibits sympathetic tone in mice.

2015-04-01

[Acta Physiol. (Oxf.) 213(4) , 902-19, (2015)]

G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus.

2015-02-11

[J. Neurosci. 35(6) , 2384-97, (2015)]

The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine.

2014-09-01

[PLoS Genet. 10(9) , e1004659, (2014)]

Driving cartilage formation in high-density human adipose-derived stem cell aggregate and sheet constructs without exogenous growth factor delivery.

2014-12-01

[Tissue Eng. Part A 20(23-24) , 3163-75, (2014)]

Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites.

2015-01-01

[Arch. Toxicol. 89(1) , 107-19, (2015)]

More Articles...