Stem Cells 2015-09-01

Pretreatment of Mesenchymal Stem Cells Manipulates Their Vasculoprotective Potential While Not Altering Their Homing Within the Injured Gut.

Dean P J Kavanagh, Shankar Suresh, Philip N Newsome, Jon Frampton, Neena Kalia

Index: Stem Cells 33 , 2785-97, (2015)

Full Text: HTML

Abstract

Mesenchymal stem cells (MSCs) have shown therapeutic promise in many experimental and clinical models of inflammation. However, a commonly reported feature of MSC transplantation is poor homing to injured tissues. Previously, we have shown that pretreatment with cytokines/chemical factors enhances hematopoietic SC adhesion within intestinal microvasculature following ischemia-reperfusion (IR) injury. Using intravital microscopy, the ability of similar pretreatment strategies to enhance the recruitment of murine MSCs to murine intestinal microvasculature following IR injury was investigated. Primary MSCs were isolated from bone marrow and selected on the basis of platelet-derived growth factor receptor-α and SC antigen-1 positivity (PDGFRα(+) /Sca-1(+) ). MSC recruitment was similar in IR injured gut mucosa when compared with sham operated controls, with limited cell adhesion observed. MSCs appeared contorted in microvessels, suggesting physical entrapment. Although not recruited specifically by injury, MSC administration significantly reduced neutrophil recruitment and improved tissue perfusion in the severely injured jejunum. Vasculoprotective effects were not demonstrated in the lesser injured ileum. Pretreatment of MSCs with tumor necrosis factor (TNF)-α, CXCL12, interferon (IFN)-γ, or hydrogen peroxide did not enhance their intestinal recruitment. In fact, TNFα and IFNγ removed the previous therapeutic ability of transplanted MSCs to reduce neutrophil infiltration and improve perfusion in the jejunum. We provide direct evidence that MSCs can rapidly limit leukocyte recruitment and improve tissue perfusion following intestinal IR injury. However, this study also highlights complexities associated with strategies to improve MSC therapeutic efficacy. Future studies using cytokine/chemical pretreatments to enhance MSC recruitment/function require careful consideration and validation to ensure therapeutic function is not impeded.© 2015 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.


Related Compounds

  • Hydrogen peroxide
  • Phenylacetic acid
  • L-Glutamine
  • (+)-Aphidicolin
  • glutaraldehyde
  • Propidium Iodide
  • H-D-Val-OH

Related Articles:

Neuropeptide Y in the noradrenergic neurones induces obesity and inhibits sympathetic tone in mice.

2015-04-01

[Acta Physiol. (Oxf.) 213(4) , 902-19, (2015)]

G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus.

2015-02-11

[J. Neurosci. 35(6) , 2384-97, (2015)]

The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine.

2014-09-01

[PLoS Genet. 10(9) , e1004659, (2014)]

Driving cartilage formation in high-density human adipose-derived stem cell aggregate and sheet constructs without exogenous growth factor delivery.

2014-12-01

[Tissue Eng. Part A 20(23-24) , 3163-75, (2014)]

Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites.

2015-01-01

[Arch. Toxicol. 89(1) , 107-19, (2015)]

More Articles...