Roundabout 4 regulates blood-tumor barrier permeability through the modulation of ZO-1, Occludin, and Claudin-5 expression.
Heng Cai, Wenjing Liu, Yixue Xue, Xiuli Shang, Jing Liu, Zhen Li, Ping Wang, Libo Liu, Yi Hu, Yunhui Liu
Index: J. Neuropathol. Exp. Neurol. 74(1) , 25-37, (2014)
Full Text: HTML
Abstract
The blood-tumor barrier (BTB) restricts the delivery of chemotherapeutic drug molecules to tumor tissues. We found that the endothelial cell (EC) receptor molecule Roundabout 4 (Robo4) is endogenously expressed in human brain microvascular ECs and that it is upregulated in a BTB model of glioma cocultured ECs. Knockdown of Robo4 in this BTB model increased permeability; short hairpin RNA targeting Robo4 (shRobo4) led to decreased transendothelial electric resistance values, increased BTB permeability, and downregulated expression of the EC tight junction proteins ZO-1, occludin, and claudin-5. Roundabout 4 influenced BTB permeability via binding with its ligand, Slit2. Short hairpin RNA targeting Robo4 also increased matrix metalloproteinase-9 (MMP-9) activity and expression in glioma cocultured ECs; pretreatment with the MMP inhibitor GM6001 partially blocked the effects of shRobo4 on the transendothelial electric resistance values and ZO-1 and occludin expression. Short hairpin RNA targeting Robo4 also upregulated the phosphorylation of Src and Erk1/2; the Src inhibitor PP2 and the Erk1/2 inhibitor PD98059 blocked shRobo4-mediated alteration in ZO-1 and occludin expression. Together, our results indicate that knockdown of Robo4 increased BTB permeability by reducing EC tight junction protein expression, and that the Src-Erk1/2-MMP-9 signal pathways are involved in this process. Thus, Robo4 may represent a useful future therapeutic target for enhancing BTB permeability.
Related Compounds
Related Articles:
2015-04-01
[Acta Physiol. (Oxf.) 213(4) , 902-19, (2015)]
2015-02-11
[J. Neurosci. 35(6) , 2384-97, (2015)]
2014-09-01
[PLoS Genet. 10(9) , e1004659, (2014)]
2014-12-01
[Tissue Eng. Part A 20(23-24) , 3163-75, (2014)]
2015-01-01
[Arch. Toxicol. 89(1) , 107-19, (2015)]