Environmental Science and Pollution Research International 2015-11-01

Study of polyethyleneimine- and amidoxime-functionalized hybrid biomass of Spirulina (Arthrospira) platensis for adsorption of uranium (VI) ion.

Gulay Bayramoglu, Aydin Akbulut, M Yakup Arica

Index: Environ. Sci. Pollut. Res. Int. 22 , 17998-8010, (2015)

Full Text: HTML

Abstract

This study investigates the potential application of the polyethyleneimine- (PEI) and amidoxime-modified Spirulina (Arthrospira) platensis biomasses for the removal of uranium ion in batch mode using the native biomass as a control system. The uranium ion adsorption was also characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra, zeta potential analysis, and surface area measurement studies. The effects of pH, biomass amount, contact time, initial uranium ion concentration, and ionic strength were evaluated by using native and modified algal biomass preparations. The uranium ion removal was rapid, with more than 70% of total adsorption taking place in 40 min, and equilibrium was established within 60 min. From the experimental data, it was found that the amount of adsorption uranium ion on the algal preparations decreased in the following series: amidoxime-modified algal biomass > PEI-modified algal biomass > native algal biomass. Maximum adsorption capacities of amidoxime- and PEI-modified, and native algal biomasses were found to be 366.8, 279.5, and 194.6 mg/g, respectively, in batchwise studies. The adsorption rate of U(VI) ion by amidoxime-modified algal biomass was higher than those of the native and PEI-modified counterparts. The adsorption processes on all the algal biomass preparations followed by the Dubinin-Radushkevitch (D-R) and Temkin isotherms and pseudo-second-order kinetic models. The thermodynamic parameters were determined at four different temperatures (i.e., 15, 25, 35, and 45 °C) using the thermodynamics constant of the Temkin isotherm model. The ΔH° and ΔG° values of U(VI) ion adsorption on algal preparations show endothermic heat of adsorption; higher temperatures favor the process. The native and modified algal biomass preparations were regenerated using 10 mM HNO3. These results show that amidoxime-modified algal biomass can be a potential candidate for effective removal of U(VI) ion from aqueous solution.


Related Compounds

  • Hydrochloric acid
  • Hydroxyamine hydro...
  • 2,3-Diamino maleon...
  • glutaraldehyde

Related Articles:

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations.

2015-04-15

[Biochem. J. 467(2) , 345-52, (2015)]

Small-molecule inhibitors of ERK-mediated immediate early gene expression and proliferation of melanoma cells expressing mutated BRaf.

2015-05-01

[Biochem. J. 467(3) , 425-38, (2015)]

Fine mapping and characterization of the L-polymerase-binding domain of the respiratory syncytial virus phosphoprotein.

2015-04-01

[J. Virol. 89(8) , 4421-33, (2015)]

DNase II-dependent DNA digestion is required for DNA sensing by TLR9.

2015-01-01

[Nat. Commun. 6 , 5853, (2015)]

More Articles...