Carbohydrate polymers 2013-04-15

Isolation of cellulose from rice straw and its conversion into cellulose acetate catalyzed by phosphotungstic acid.

Guozhi Fan, Min Wang, Chongjing Liao, Tao Fang, Jianfen Li, Ronghui Zhou

Index: Carbohydr. Polym. 94(1) , 71-6, (2013)

Full Text: HTML

Abstract

Cellulose was isolated from rice straw by pretreatment with dilute alkaline and acid solutions successively, and it was further transferred into cellulose acetate in the presence of acetic anhydride and phosphotungstic acid (H3PW12O40·6H2O). The removal of hemicellulose and lignin was affected by the concentration of KOH and the immersion time in acetic acid solution, and 83wt.% content of cellulose in the treated rice straw was obtained after pretreatment with 4% KOH and immersion in acetic acid for 5h. Phosphotungstic acid was found to be an effective catalyst for the acetylation of the cellulose derived from rice straw. The degree of substitution (DS) values revealed a significant effect for the solubility of cellulose acetate, and the acetone-soluble cellulose acetate with DS values around 2.2 can be obtained by changing the amount of phosphotungstic acid and the time of acetylation. Both the structure of cellulose separated from rice straw and cellulose acetate were confirmed by FTIR and XRD.Copyright © 2013 Elsevier Ltd. All rights reserved.


Related Compounds

  • Potassium hydroxid...
  • Ethanoic anhydride
  • Sartorius SM 1112...

Related Articles:

Synergistic activity of tenofovir and nevirapine combinations released from polycaprolactone matrices for potential enhanced prevention of HIV infection through the vaginal route.

2014-10-01

[Eur. J. Pharm. Biopharm. 88(2) , 406-14, (2014)]

Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae.

2015-01-01

[Biotechnol. Bioeng. 112(1) , 181-8, (2014)]

Detailed characterization of a long-term rodent model of critical illness and recovery.

2015-03-01

[Crit. Care Med. 43(3) , e84-96, (2015)]

Process development for scum to biodiesel conversion.

2015-06-01

[Bioresour. Technol. 185 , 185-93, (2015)]

The ubiquitin-selective chaperone Cdc48/p97 associates with Ubx3 to modulate monoubiquitylation of histone H2B.

2014-01-01

[Nucleic Acids Res. 42(17) , 10975-86, (2014)]

More Articles...