Molecular and Cellular Biochemistry 2015-01-01

Ouabain elicits human glioblastoma cells apoptosis by generating reactive oxygen species in ERK-p66SHC-dependent pathway.

Xiaofei Yan, FenLi Liang, Dongmin Li, Jin Zheng

Index: Mol. Cell Biochem. 398(1-2) , 95-104, (2015)

Full Text: HTML

Abstract

Excessive reactive oxygen species (ROS) generation has been implicated as one of main agents in ouabain-induced anticancer effect. Unfortunately, the signaling pathways under it are not very clarified. In the present study, we investigated the molecular mechanism involved in ouabain-induced ROS generation and cell apoptosis on human U373MG and U87MG glioma cells. Ouabain-induced glioblastoma cells apoptosis and increased ROS generation. Clearance ROS by three different ROS scavenger partly, but not totally, reversed ouabain's effect on cell apoptosis. Ouabain-induced ROS generation was not regulated by calcium overload, reduced nicotinamide adenine dinucleotide phosphate oxidation, but by p66Shc phosphorylation. Ouabain treatment increased p66Shc Ser36 phosphorylation. Knockdown of p66Shc by siRNA significantly inhibited ROS generations in response to ouabain. Ouabain-induced p66Shc phosphorylation through Src/Ras/extracellular signal-regulated kinase signal pathway. Our results uncovered a novel signaling pathway with p66Shc, ouabain-induced ROS generation, and glioblastoma cell apoptosis.


Related Compounds

  • Acetylcysteine(N-...
  • Glutathione
  • GW5074
  • Myxothiazol
  • KN-93
  • Fluorescein Diace...
  • Ouabain Octahydra...

Related Articles:

Ellipticine induces apoptosis in T-cell lymphoma via oxidative DNA damage.

2015-03-01

[Leuk. Lymphoma 56(3) , 739-47, (2015)]

Mitochondrial dynamics regulate melanogenesis through proteasomal degradation of MITF via ROS-ERK activation.

2014-11-01

[Pigment Cell Melanoma Res. 27(6) , 1051-62, (2014)]

Antiviral effect of methylated flavonol isorhamnetin against influenza.

2015-01-01

[PLoS ONE 10(3) , e0121610, (2015)]

Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion.

2015-02-01

[Mol. Med. Report. 11(2) , 1428-34, (2014)]

Mechanism of Dose-Dependent Regulation of UBE1L by Polyphenols in Human Bronchial Epithelial Cells.

2015-08-01

[J. Cell. Biochem. 116 , 1553-62, (2015)]

More Articles...