Toxicology Letters 2014-12-01

Metabolic polymorphisms and biomarkers of effect in the biomonitoring of occupational exposure to low-levels of benzene: state of the art.

G De Palma, M Manno

Index: Toxicol. Lett. 231(2) , 194-204, (2014)

Full Text: HTML

Abstract

Current levels of occupational exposure to benzene, a genotoxic human carcinogen, in Western countries are reduced by two-three orders of magnitude (from ppm to ppb) as compared to the past. However, as benzene toxicity is strongly dependent on biotransformation and recent evidence underlines a higher efficiency of bio-activation pathways at lower levels of exposure, toxic effects at low doses could be higher than expected, particularly in susceptible individuals. Currently, biological monitoring can allow accurate exposure assessment, relying on sensitive and specific enough biomarkers of internal dose. The availability of similarly reliable biomarkers of early effect or susceptibility could greatly improve the risk assessment process to such an extent that risk could even be assessed at the individual level. As to susceptibility biomarkers, functional genetic polymorphisms of relevant biotransformation enzymes may modulate the risk of adverse effects (NQO1) and the levels of biomarkers of internal dose, in particular S-phenylmercapturic acid (GSTM1, GSTT1, GSTA1). Among biomarkers of early effect, genotoxicity indicators, although sensitive in some cases, are too aspecific for routine use in occupational health surveillance programmes. Currently only the periodical blood cell count seems suitable enough to be applied in the longitudinal monitoring of effects from benzene exposure. Novel biomarkers of early effect are expected from higher collaboration among toxicologists and clinicians, also using advanced "omics" techniques. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.


Related Compounds

  • Acetylcysteine(N-...
  • benzene
  • GultathioneStrans...
  • S-Phenylmercaptur...

Related Articles:

Ellipticine induces apoptosis in T-cell lymphoma via oxidative DNA damage.

2015-03-01

[Leuk. Lymphoma 56(3) , 739-47, (2015)]

Mitochondrial dynamics regulate melanogenesis through proteasomal degradation of MITF via ROS-ERK activation.

2014-11-01

[Pigment Cell Melanoma Res. 27(6) , 1051-62, (2014)]

Antiviral effect of methylated flavonol isorhamnetin against influenza.

2015-01-01

[PLoS ONE 10(3) , e0121610, (2015)]

Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion.

2015-02-01

[Mol. Med. Report. 11(2) , 1428-34, (2014)]

Mechanism of Dose-Dependent Regulation of UBE1L by Polyphenols in Human Bronchial Epithelial Cells.

2015-08-01

[J. Cell. Biochem. 116 , 1553-62, (2015)]

More Articles...