Neuroscience Letters 2015-07-10

Experience-dependent regulation of tissue-type plasminogen activator in the mouse barrel cortex.

Chia-Chien Chen, Philip Chu, Joshua C Brumberg

Index: Neurosci. Lett. 599 , 152-7, (2015)

Full Text: HTML

Abstract

It has been suggested that tissue-type plasminogen activator (tPA), a serine protease, plays a key role in regulating the extracellular matrix core proteins, thereby impacting the structural plasticity in the cerebral cortex. Much is known about its role in regulating plasticity in the visual cortex. However, its permissive role has not been demonstrated to generalize to other cerebral cortical areas. By utilizing a combination of immunofluorescent histochemistry and confocal microscopy, we demonstrate that endogenous tPA is indeed present in the somatosensory cortex, and its expression is experience-dependent. Chronic sensory deprivation induced by whisker trimming from birth for one month leads to increased tPA immunoreactivity in all layers of the barrel cortex. Furthermore, tPA immunoreactivity remains high even after sensation has been restored to the mystacial pad (by allowing whiskers to grow back to full length for one month). Our results suggest that tPA levels in the cerebral cortex are regulated by sensory experience, and play a key role in regulating structural remodeling in the cerebral cortex. Copyright © 2015. Published by Elsevier Ireland Ltd.


Related Compounds

  • Fluorescein
  • 5-([4,6-Dichlorotr...
  • lsd

Related Articles:

CPEB1 modulates differentiation of glioma stem cells via downregulation of HES1 and SIRT1 expression.

2014-08-30

[Oncotarget 5(16) , 6756-69, (2014)]

Cell-cell adhesions and cell contractility are upregulated upon desmosome disruption.

2014-01-01

[PLoS ONE 9(7) , e101824, (2014)]

Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson's disease.

2013-03-01

[Brain Behav. 3(2) , 75-88, (2013)]

Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS.

2015-02-15

[J. Immunol. 194(4) , 1545-54, (2015)]

Enhanced Retinal Ganglion Cell Survival in Glaucoma by Hypoxic Postconditioning After Disease Onset.

2015-04-01

[Neurotherapeutics 12(2) , 502-14, (2015)]

More Articles...