Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation.
Maureen Cetera, Guillermina R Ramirez-San Juan, Patrick W Oakes, Lindsay Lewellyn, Michael J Fairchild, Guy Tanentzapf, Margaret L Gardel, Sally Horne-Badovinac
Index: Nat. Commun. 5 , 5511, (2014)
Full Text: HTML
Abstract
Tissues use numerous mechanisms to change shape during development. The Drosophila egg chamber is an organ-like structure that elongates to form an elliptical egg. During elongation the follicular epithelial cells undergo a collective migration that causes the egg chamber to rotate within its surrounding basement membrane. Rotation coincides with the formation of a 'molecular corset', in which actin bundles in the epithelium and fibrils in the basement membrane are all aligned perpendicular to the elongation axis. Here we show that rotation plays a critical role in building the actin-based component of the corset. Rotation begins shortly after egg chamber formation and requires lamellipodial protrusions at each follicle cell's leading edge. During early stages, rotation is necessary for tissue-level actin bundle alignment, but it becomes dispensable after the basement membrane is polarized. This work highlights how collective cell migration can be used to build a polarized tissue organization for organ morphogenesis.
Related Compounds
Related Articles:
2015-01-01
[Nat. Commun. 6 , 5794, (2015)]
2015-05-01
[Biomaterials 51 , 1-11, (2015)]
2014-09-01
[Cell. Mol. Life Sci. 71(17) , 3381-92, (2014)]
2015-02-01
[Hum. Mol. Genet. 24(3) , 698-713, (2015)]
2014-11-01
[FASEB J. 28(11) , 4792-805, (2014)]