Inhibition of the dapE-Encoded N-Succinyl-L,L-diaminopimelic Acid Desuccinylase from Neisseria meningitidis by L-Captopril.
Anna Starus, Boguslaw Nocek, Brian Bennett, James A Larrabee, Daniel L Shaw, Wisath Sae-Lee, Marie T Russo, Danuta M Gillner, Magdalena Makowska-Grzyska, Andrzej Joachimiak, Richard C Holz
Index: Biochemistry 54 , 4834-44, (2015)
Full Text: HTML
Abstract
Binding of the competitive inhibitor L-captopril to the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Neisseria meningitidis (NmDapE) was examined by kinetic, spectroscopic, and crystallographic methods. L-Captopril, an angiotensin-converting enzyme (ACE) inhibitor, was previously shown to be a potent inhibitor of the DapE from Haemophilus influenzae (HiDapE) with an IC50 of 3.3 μM and a measured Ki of 1.8 μM and displayed a dose-responsive antibiotic activity toward Escherichia coli. L-Captopril is also a competitive inhibitor of NmDapE with a Ki of 2.8 μM. To examine the nature of the interaction of L-captopril with the dinuclear active site of DapE, we have obtained electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) data for the enzymatically hyperactive Co(II)-substituted forms of both HiDapE and NmDapE. EPR and MCD data indicate that the two Co(II) ions in DapE are antiferromagnetically coupled, yielding an S = 0 ground state, and suggest a thiolate bridge between the two metal ions. Verification of a thiolate-bridged dinuclear complex was obtained by determining the three-dimensional X-ray crystal structure of NmDapE in complex with L-captopril at 1.8 Å resolution. Combination of these data provides new insights into binding of L-captopril to the active site of DapE enzymes as well as important inhibitor-active site residue interaction's. Such information is critical for the design of new, potent inhibitors of DapE enzymes.
Related Compounds
Related Articles:
2015-05-01
[J. Virol. 89(9) , 4918-31, (2015)]
2015-03-01
[Mol. Syst. Biol. 11(3) , 794, (2015)]
2015-02-17
[Proc. Natl. Acad. Sci. U. S. A. 112(7) , E747-56, (2015)]
2014-08-01
[J. Gen. Virol. 95(Pt 8) , 1689-700, (2014)]
2014-05-01
[Nucleic Acids Res. 42(9) , 5776-89, (2014)]