BMC Biotechnology 2009-01-01

Non-antibiotic selection systems for soybean somatic embryos: the lysine analog aminoethyl-cysteine as a selection agent.

Suryadevara S Rao, Lewamy Mamadou, Matt McConnell, Raghuveer Polisetty, Prachuab Kwanyuen, David Hildebrand

Index: BMC Biotechnol. 9 , 94, (2009)

Full Text: HTML

Abstract

In soybean somatic embryo transformation, the standard selection agent currently used is hygromycin. It may be preferable to avoid use of antibiotic resistance genes in foods. The objective of these experiments was to develop a selection system for producing transgenic soybean somatic embryos without the use of antibiotics such as hygromycin.When tested against different alternate selection agents our studies show that 0.16 microg/mL glufosinate, 40 mg/L isopropylamine-glyphosate, 0.5 mg/mL (S-(2 aminoethyl)-L-cysteine) (AEC) and the acetolactate synthase (ALS) inhibitors Exceed and Synchrony both at 150 microg/mL inhibited soybean somatic embryo growth. Even at the concentration of 2 mg/mL, lysine+threonine (LT) were poor selection agents. The use of AEC may be preferable since it is a natural compound. Unlike the plant enzyme, dihydrodipicolinate synthase (DHPS) from E. coli is not feed-back inhibited by physiological concentrations of lysine. The dapA gene which codes for E. coli DHPS was expressed in soybean somatic embryos under the control of the CaMV 35S promoter. Following introduction of the construct into embryogenic tissue of soybean, transgenic events were recovered by incubating the tissue in liquid medium containing AEC at a concentration of 5 mM. Only transgenic soybeans were able to grow at this concentration of AEC; no escapes were observed.Genetically engineered soybeans expressing a lysine insensitive DHPS gene can be selected with the non-antibiotic selection agent AEC. We also report here the inhibitory effects of glufosinate, (isopropylamine-glyphosate) (Roundup), AEC and the ALS inhibitors Exceed and Synchrony against different tissues of soybean.


Related Compounds

  • S-(2-Aminoethyl)-...

Related Articles:

Evidence for conformational movement and radical mechanism in the reaction of 4-thia-L-lysine with lysine 5,6-aminomutase.

2009-09-10

[J. Phys. Chem. B 113(36) , 12161-3, (2009)]

Radical triplets and suicide inhibition in reactions of 4-thia-D- and 4-thia-L-lysine with lysine 5,6-aminomutase.

2009-09-01

[Biochemistry 48(34) , 8151-60, (2009)]

Inhibition of lysine 2,3-aminomutase by the alternative substrate 4-thialysine and characterization of the 4-thialysyl radical intermediate.

2001-03-15

[Arch. Biochem. Biophys. 387(2) , 281-8, (2001)]

A novel member of the GCN5-related N-acetyltransferase superfamily from Caenorhabditis elegans preferentially catalyses the N-acetylation of thialysine [S-(2-aminoethyl)-L-cysteine].

2004-11-15

[Biochem. J. 384(Pt 1) , 129-37, (2004)]

Stringent mating-type-regulated auxotrophy increases the accuracy of systematic genetic interaction screens with Saccharomyces cerevisiae mutant arrays.

2009-01-01

[Genetics 181(1) , 289-300, (2009)]

More Articles...