Oncotarget 2015-08-14

The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144.

Heng Cai, Yixue Xue, Ping Wang, Zhenhua Wang, Zhen Li, Yi Hu, Zhiqing Li, Xiuli Shang, Yunhui Liu

Index: Oncotarget 6 , 19759-79, (2015)

Full Text: HTML

Abstract

Blood-tumor barrier (BTB) limits the delivery of chemotherapeutic agent to brain tumor tissues. Long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in various biologic processes of tumors. However, the role of lncRNAs in BTB permeability is unclear. LncRNA TUG1 (taurine upregulated gene 1) was highly expressed in glioma vascular endothelial cells from glioma tissues. It also upregulated in glioma co-cultured endothelial cells (GEC) from BTB model in vitro. Knockdown of TUG1 increased BTB permeability, and meanwhile down-regulated the expression of the tight junction proteins ZO-1, occludin, and claudin-5. Both bioinformatics and luciferase reporter assays demonstrated that TUG1 influenced BTB permeability via binding to miR-144. Furthermore, Knockdown of TUG1 also down-regulated Heat shock transcription factor 2 (HSF2), a transcription factor of the heat shock transcription factor family, which was defined as a direct and functional downstream target of miR-144. HSF2 up-regulated the promoter activities and interacted with the promoters of ZO-1, occludin, and claudin-5 in GECs. In conclusion, our results indicate that knockdown of TUG1 increased BTB permeability via binding to miR-144 and then reducing EC tight junction protein expression by targeting HSF2. Thus, TUG1 may represent a useful future therapeutic target for enhancing BTB permeability.


Related Compounds

  • Ascorbic acid
  • Hydrocortisone
  • CGS-12066 maleate
  • alpha-Toluenesulfo...

Related Articles:

Comparative in vitro study on magnetic iron oxide nanoparticles for MRI tracking of adipose tissue-derived progenitor cells.

2014-01-01

[PLoS ONE 9(9) , e108055, (2014)]

DNA double-strand breaks by Cr(VI) are targeted to euchromatin and cause ATR-dependent phosphorylation of histone H2AX and its ubiquitination.

2015-01-01

[Toxicol. Sci. 143(1) , 54-63, (2014)]

Hypoxia reduces MAX expression in endothelial cells by unproductive splicing.

2014-12-20

[FEBS Lett. 588(24) , 4784-90, (2014)]

Proteolysis of decellularized extracellular matrices results in loss of fibronectin and cell binding activity.

2015-04-03

[Biochem. Biophys. Res. Commun. 459(2) , 246-51, (2015)]

Flow perfusion co-culture of human mesenchymal stem cells and endothelial cells on biodegradable polymer scaffolds.

2014-07-01

[Ann. Biomed. Eng. 42(7) , 1381-90, (2014)]

More Articles...