Journal of Medicinal Chemistry 2005-08-25

Structure of aldehyde reductase holoenzyme in complex with the potent aldose reductase inhibitor fidarestat: implications for inhibitor binding and selectivity.

Ossama El-Kabbani, Vincenzo Carbone, Connie Darmanin, Mitsuru Oka, Andre Mitschler, Alberto Podjarny, Clemens Schulze-Briese, Roland P-T Chung

Index: J. Med. Chem. 48(17) , 5536-42, (2005)

Full Text: HTML

Abstract

Structure determination of porcine aldehyde reductase holoenzyme in complex with the potent aldose reductase inhibitor fidarestat was carried out to explain the difference in the potency of the inhibitor for aldose and aldehyde reductases. The hydrogen bonds between the active-site residues Tyr50, His113, and Trp114 and fidarestat are conserved in the two enzymes. In aldose reductase, Leu300 forms a hydrogen bond through its main-chain nitrogen atom with the exocyclic amide group of the inhibitor, which when replaced with a Pro in aldehyde reductase, cannot form a hydrogen bond, thus causing a loss in binding energy. Furthermore, in aldehyde reductase, the side chain of Trp220 occupies a disordered split conformation that is not observed in aldose reductase. Molecular modeling and inhibitory activity measurements suggest that the difference in the interaction between the side chain of Trp220 and fidarestat may contribute to the difference in the binding of the inhibitor to the enzymes.


Related Compounds

  • (R)-Alcohol dehyd...

Related Articles:

Efficient one-step production of (S)-1-phenyl-1,2-ethanediol from (R)-enantiomer plus NAD(+)-NADPH in-situ regeneration using engineered Escherichia coli.

2012-01-01

[Microb. Cell Fact. 11 , 167, (2012)]

A new strategy to improve the efficiency and sustainability of Candida parapsilosis catalyzing deracemization of (R,S)-1-phenyl-1,2-ethanediol under non-growing conditions: increase of NADPH availability.

2009-01-01

[J. Microbiol. Biotechnol. 19(1) , 65-71, (2009)]

Stereospecificity of ketoreductase domains 1 and 2 of the tylactone modular polyketide synthase.

2008-09-03

[J. Am. Chem. Soc. 130 , 11598-11599, (2008)]

Inhibition of carbonyl reductase activity in pig heart by alkyl phenyl ketones.

2007-02-01

[J. Enzyme Inhib. Med. Chem. 22(1) , 105-9, (2007)]

De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).

2009-05-01

[Appl. Environ. Microbiol. 75(9) , 2765-74, (2009)]

More Articles...