Experimental & molecular medicine 2014-01-01

Transplantation of betacellulin-transduced islets improves glucose intolerance in diabetic mice.

Mi-Young Song, Ui-Jin Bae, Kyu Yun Jang, Byung-Hyun Park

Index: Exp. Mol. Med. 46 , e98, (2014)

Full Text: HTML

Abstract

Type 1 diabetes is an autoimmune disease caused by permanent destruction of insulin-producing pancreatic β cells and requires lifelong exogenous insulin therapy. Recently, islet transplantation has been developed, and although there have been significant advances, this approach is not widely used clinically due to the poor survival rate of the engrafted islets. We hypothesized that improving survival of engrafted islets through ex vivo genetic engineering could be a novel strategy for successful islet transplantation. We transduced islets with adenoviruses expressing betacellulin, an epidermal growth factor receptor ligand, which promotes β-cell growth and differentiation, and transplanted these islets under the renal capsule of streptozotocin-induced diabetic mice. Transplantation with betacellulin-transduced islets resulted in prolonged normoglycemia and improved glucose tolerance compared with those of control virus-transduced islets. In addition, increased microvascular density was evident in the implanted islets, concomitant with increased endothelial von Willebrand factor immunoreactivity. Finally, cultured islets transduced with betacellulin displayed increased proliferation, reduced apoptosis and enhanced glucose-stimulated insulin secretion in the presence of cytokines. These experiments suggest that transplantation with betacellulin-transduced islets extends islet survival and preserves functional islet mass, leading to a therapeutic benefit in type 1 diabetes.


Related Compounds

  • Magnesium choride
  • D-(+)-Glucose
  • HEPES
  • HUMAN BETACE...
  • Beta-D-allose

Related Articles:

Functional consequence of the MET-T1010I polymorphism in breast cancer.

2015-02-20

[Oncotarget 6(5) , 2604-14, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Polycystin-1 maturation requires polycystin-2 in a dose-dependent manner.

2015-02-01

[J. Clin. Invest. 125(2) , 607-20, (2015)]

The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells.

2015-01-01

[Drug Des. Devel. Ther. 9 , 1627-52, (2015)]

Inhibition of a multiproduct terpene synthase from Medicago truncatula by 3-bromoprenyl diphosphates.

2015-04-28

[Org. Biomol. Chem. 13(16) , 4776-84, (2015)]

More Articles...