Peroral amphotericin B polymer nanoparticles lead to comparable or superior in vivo antifungal activity to that of intravenous Ambisome® or Fungizone™.
Jagdishbhai L Italia, Andrew Sharp, Katharine C Carter, Peter Warn, M N V Ravi Kumar
Index: PLoS ONE 6 , e25744, (2011)
Full Text: HTML
Abstract
Despite advances in the treatment, the morbidity and mortality rate associated with invasive aspergillosis remains unacceptably high (70-90%) in immunocompromised patients. Amphotericin B (AMB), a polyene antibiotic with broad spectrum antifungal activity appears to be a choice of treatment but is available only as an intravenous formulation; development of an oral formulation would be beneficial as well as economical.Poly(lactide-co-glycolode) (PLGA) nanoparticles encapsulating AMB (AMB-NPs) were developed for oral administration. The AMB-NPs were 113 ± 20 nm in size with ~70% entrapment efficiency at 30% AMB w/w of polymer. The in vivo therapeutic efficacy of oral AMB-NPs was evaluated in neutropenic murine models of disseminated and invasive pulmonary aspergillosis. AMB-NPs exhibited comparable or superior efficacy to that of Ambisome® or Fungizone™ administered parenterally indicating potential of NPs as carrier for oral delivery.The present investigation describes an efficient way of producing AMB-NPs with higher AMB pay-load and entrapment efficiency employing DMSO as solvent and ethanol as non-solvent. The developed oral formulation was highly efficacious in murine models of disseminated aspergillosis as well as an invasive pulmonary aspergillosis, which is refractory to treatment with IP Fungizone™ and responds only modestly to AmBisome®.
Related Compounds
Related Articles:
2015-03-15
[Cancer Res. 75(6) , 1102-12, (2015)]
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-22
[J. Ethnopharmacol. 164 , 265-72, (2015)]
2015-01-01
[Bioresour. Technol. 176 , 156-62, (2014)]
2014-12-08
[Biomacromolecules 15(12) , 4561-9, (2014)]