A novel inhibitor of gyrase B is a potent drug candidate for treatment of tuberculosis and nontuberculosis mycobacterial infections.
Christopher P Locher, Steven M Jones, Brian L Hanzelka, Emanuele Perola, Carolyn M Shoen, Michael H Cynamon, Andile H Ngwane, Ian J Wiid, Paul D van Helden, Fabrice Betoudji, Eric L Nuermberger, John A Thomson
Index: Antimicrob. Agents Chemother. 59(3) , 1455-65, (2015)
Full Text: HTML
Abstract
New drugs to treat drug-resistant tuberculosis are urgently needed. Extensively drug-resistant and probably the totally drug-resistant tuberculosis strains are resistant to fluoroquinolones like moxifloxacin, which target gyrase A, and most people infected with these strains die within a year. In this study, we found that a novel aminobenzimidazole, VXc-486, which targets gyrase B, potently inhibits multiple drug-sensitive isolates and drug-resistant isolates of Mycobacterium tuberculosis in vitro (MICs of 0.03 to 0.30 μg/ml and 0.08 to 5.48 μg/ml, respectively) and reduces mycobacterial burdens in lungs of infected mice in vivo. VXc-486 is active against drug-resistant isolates, has bactericidal activity, and kills intracellular and dormant M. tuberculosis bacteria in a low-oxygen environment. Furthermore, we found that VXc-486 inhibits the growth of multiple strains of Mycobacterium abscessus, Mycobacterium avium complex, and Mycobacterium kansasii (MICs of 0.1 to 2.0 μg/ml), as well as that of several strains of Nocardia spp. (MICs of 0.1 to 1.0 μg/ml). We made a direct comparison of the parent compound VXc-486 and a phosphate prodrug of VXc-486 and showed that the prodrug of VXc-486 had more potent killing of M. tuberculosis than did VXc-486 in vivo. In combination with other antimycobacterial drugs, the prodrug of VXc-486 sterilized M. tuberculosis infection when combined with rifapentine-pyrazinamide and bedaquiline-pyrazinamide in a relapse infection study in mice. Furthermore, the prodrug of VXc-486 appeared to perform at least as well as the gyrase A inhibitor moxifloxacin. These findings warrant further development of the prodrug of VXc-486 for the treatment of tuberculosis and nontuberculosis mycobacterial infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Related Compounds
Related Articles:
2014-08-01
[Mol. Plant 7(8) , 1365-83, (2014)]
2015-04-01
[J. Surg. Res. 194(2) , 571-80, (2015)]
2015-01-01
[Nat. Commun. 6 , 5853, (2015)]
2014-09-01
[Pharmacol. Biochem. Behav. 124 , 153-9, (2014)]
2014-12-01
[FEBS J. 281(24) , 5498-512, (2014)]