Journal of Neuroscience 2015-01-14

Structure-function relationships between aldolase C/zebrin II expression and complex spike synchrony in the cerebellum.

Shinichiro Tsutsumi, Maya Yamazaki, Taisuke Miyazaki, Masahiko Watanabe, Kenji Sakimura, Masanobu Kano, Kazuo Kitamura

Index: J. Neurosci. 35(2) , 843-52, (2015)

Full Text: HTML

Abstract

Simple and regular anatomical structure is a hallmark of the cerebellar cortex. Parasagittally arrayed alternate expression of aldolase C/zebrin II in Purkinje cells (PCs) has been extensively studied, but surprisingly little is known about its functional significance. Here we found a precise structure-function relationship between aldolase C expression and synchrony of PC complex spike activities that reflect climbing fiber inputs to PCs. We performed two-photon calcium imaging in transgenic mice in which aldolase C compartments can be visualized in vivo, and identified highly synchronous complex spike activities among aldolase C-positive or aldolase C-negative PCs, but not across these populations. The boundary of aldolase C compartments corresponded to that of complex spike synchrony at single-cell resolution. Sensory stimulation evoked aldolase C compartment-specific complex spike responses and synchrony. This result further revealed the structure-function segregation. In awake animals, complex spike synchrony both within and between PC populations across the aldolase C boundary were enhanced in response to sensory stimuli, in a way that two functionally distinct PC ensembles are coactivated. These results suggest that PC populations characterized by aldolase C expression precisely represent distinct functional units of the cerebellar cortex, and these functional units can cooperate to process sensory information in awake animals. Copyright © 2015 the authors 0270-6474/15/350843-10$15.00/0.


Related Compounds

  • Dimethyl sulfoxide
  • Harmaline
  • argon-40
  • 8-Octanoyloxypyren...

Related Articles:

The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells.

2015-01-01

[Drug Des. Devel. Ther. 9 , 1627-52, (2015)]

Activation of Tomato Bushy Stunt Virus RNA-Dependent RNA Polymerase by Cellular Heat Shock Protein 70 Is Enhanced by Phospholipids In Vitro.

2015-05-01

[J. Virol. 89(10) , 5714-23, (2015)]

Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis.

2015-01-01

[EMBO Mol. Med. 7(1) , 102-23, (2015)]

Inducible, tightly regulated and growth condition-independent transcription factor in Saccharomyces cerevisiae.

2014-01-01

[Nucleic Acids Res. 42(17) , e130, (2014)]

Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival.

2015-02-01

[Hum. Mol. Genet. 24(3) , 698-713, (2015)]

More Articles...