Psychopharmacology 2015-09-01

Operant ethanol self-administration increases extracellular-signal regulated protein kinase (ERK) phosphorylation in reward-related brain regions: selective regulation of positive reinforcement in the prefrontal cortex of C57BL/6J mice.

Sara Faccidomo, Michael C Salling, Christina Galunas, Clyde W Hodge

Index: Psychopharmacology 232 , 3417-30, (2015)

Full Text: HTML

Abstract

Extracellular-signal regulated protein kinase (ERK1/2) is activated by ethanol in reward-related brain regions. Accordingly, systemic inhibition of ERK1/2 potentiates ethanol reinforcement. However, the brain region(s) that mediate this effect are unknown.This study aims to pharmacologically inhibit ERK1/2 in the medial prefrontal cortex (PFC), nucleus accumbens (NAC), and amygdala (AMY) prior to ethanol or sucrose self-administration, and evaluate effects of operant ethanol self-administration on ERK1/2 phosphorylation (pERK1/2).Male C57BL/6J mice were trained to lever press on a fixed-ratio-4 schedule of 9% ethanol + 2% sucrose (ethanol) or 2% sucrose (sucrose) reinforcement. Mice were sacrificed immediately after the 30th self-administration session and pERK1/2 immunoreactivity was quantified in targeted brain regions. Additional groups of mice were injected with SL 327 (0-1.7 μg/side) in PFC, NAC, or AMY prior to self-administration.pERK1/2 immunoreactivity was significantly increased by operant ethanol (g/kg = 1.21 g/kg; BAC = 54.9 mg/dl) in the PFC, NAC (core and shell), and AMY (central nucleus) as compared to sucrose. Microinjection of SL 327 (1.7 μg) into the PFC selectively increased ethanol self-administration. Intra-NAC injection of SL 327 had no effect on ethanol- but suppressed sucrose-reinforced responding. Intra-AMY microinjection of SL 327 had no effect on either ethanol- or sucrose-reinforced responding. Locomotor activity was unaffected under all conditions.Operant ethanol self-administration increases pERK1/2 activation in the PFC, NAC, and AMY. However, ERK1/2 activity only in the PFC mechanistically regulates ethanol self-administration. These data suggest that ethanol-induced activation of ERK1/2 in the PFC is a critical pharmacological effect that mediates the reinforcing properties of the drug.


Related Compounds

  • Dimethyl sulfoxide
  • H-Dab.HCl
  • 8-Octanoyloxypyren...
  • Benzyl cyanide

Related Articles:

The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells.

2015-01-01

[Drug Des. Devel. Ther. 9 , 1627-52, (2015)]

Activation of Tomato Bushy Stunt Virus RNA-Dependent RNA Polymerase by Cellular Heat Shock Protein 70 Is Enhanced by Phospholipids In Vitro.

2015-05-01

[J. Virol. 89(10) , 5714-23, (2015)]

Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis.

2015-01-01

[EMBO Mol. Med. 7(1) , 102-23, (2015)]

Inducible, tightly regulated and growth condition-independent transcription factor in Saccharomyces cerevisiae.

2014-01-01

[Nucleic Acids Res. 42(17) , e130, (2014)]

Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival.

2015-02-01

[Hum. Mol. Genet. 24(3) , 698-713, (2015)]

More Articles...