Cytoprotection of human endothelial cells from oxidant stress with CDDO derivatives: network analysis of genes responsible for cytoprotection.
James A Bynum, Ashish Rastogi, Salomon A Stavchansky, Phillip D Bowman
Index: Pharmacology 95 , 181-92, (2015)
Full Text: HTML
Abstract
To identify drugs that may reduce the impact of oxidant stress on cell viability.Human umbilical vein endothelial cells were treated with 200 nmol/l CDDO-Im (imidazole) and CDDO-Me (methyl) after exposure to menadione and compared to vehicle-treated cells. Cell viability and cytotoxicity were assessed, and gene expression profiling was performed.CDDO-Im was significantly more cytoprotective and less cytotoxic (p < 0.001) than CDDO-Me. Although both provided cytoprotection by induction of gene transcription, CDDO-Im induced more genes. In addition to a higher induction of the key cytoprotective gene heme oxygenase-1 (38.9-fold increase for CDDO-Im and 26.5-fold increase for CDDO-Me), CDDO-Im also induced greater expression of heat shock proteins (5.5-fold increase compared to 2.8-fold for CDDO-Me).Both compounds showed good induction of heme oxygenase, which largely accounted for their cytoprotective effect. Differences were detected in cytotoxicity at higher doses, indicating that CDDO-Me was more cytotoxic than CDDO-Im. Significant differences were detected in the ability of CDDO-Im and CDDO-Me to affect differential gene transcription. CDDO-Im induced more genes than did CDDO-Me. The source of the differences in gene expression patterns between CDDO-Im and CDDO-Me was not determined but may be important in long-term use of this class of drugs.© 2015 S. Karger AG, Basel
Related Compounds
Related Articles:
2015-01-01
[Drug Des. Devel. Ther. 9 , 1627-52, (2015)]
2015-05-01
[J. Virol. 89(10) , 5714-23, (2015)]
2015-01-01
[EMBO Mol. Med. 7(1) , 102-23, (2015)]
2014-01-01
[Nucleic Acids Res. 42(17) , e130, (2014)]
2015-02-01
[Hum. Mol. Genet. 24(3) , 698-713, (2015)]