Biophysical Chemistry 2007-06-01

Effects of butanol isomers on dipalmitoylphosphatidylcholine bilayer membranes.

Megan D Reeves, Adam K Schawel, Weidong Wang, Phoebe Dea

Index: Biophys. Chem. 128(1) , 13-8, (2007)

Full Text: HTML

Abstract

Differential scanning calorimetry and (31)P-NMR were used to study the effects of butanol isomers on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers. The threshold concentration for the onset of interdigitation for each isomer was determined by the disappearance of the pretransition and the onset of a large hysteresis between the heating and cooling scans of the gel-to-liquid main transition. The threshold concentration was found to correlate with increased solubility of the isomers in the aqueous phase, led by tert-butanol. However, as the solution concentration of tert-butanol increased, there was an abrupt shrinking of the hysteresis, initially with well-resolved shoulder peaks indicating mixed phases. The eventual disappearance of the shoulder peaks was correlated with a breakdown of the multilamellar structure identified using (31)P-NMR.


Related Compounds

  • (±)-2-Butanol
  • UNII:FE7IK35O...
  • (S)-(+)-2-Butanol
  • (R)-(-)-2-Butanol

Related Articles:

Acidogenic fermentation of Scenedesmus sp.-AMDD: Comparison of volatile fatty acids yields between mesophilic and thermophilic conditions.

2016-01-01

[Bioresour. Technol. 200 , 624-30, (2015)]

Engineered Nanostructures of Haptens Lead to Unexpected Formation of Membrane Nanotubes Connecting Rat Basophilic Leukemia Cells.

2015-07-28

[ACS Nano 9 , 6738-46, (2015)]

Convenient QSAR model for predicting the complexation of structurally diverse compounds with β-cyclodextrins

2009-01-01

[Bioorg. Med. Chem. 17 , 896-904, (2009)]

Evaluation of injection methods for fast, high peak capacity separations with low thermal mass gas chromatography.

2015-05-01

[J. Chromatogr. A. 1392 , 82-90, (2015)]

The substrate binding cavity of particulate methane monooxygenase from Methylosinus trichosporium OB3b expresses high enantioselectivity for n-butane and n-pentane oxidation to 2-alcohol.

2011-11-01

[Biotechnol. Lett. 33(11) , 2241-6, (2011)]

More Articles...