Journal of Physical Chemistry A: Molecules, Spectroscopy, Kinetics, Environment and General Theory 2011-06-16

Thermal and electron-induced decomposition of 2-butanol on Pt(111).

Xiaofeng Hu, Richard A Rosenberg, Michael Trenary

Index: J. Phys. Chem. A 115(23) , 5785-93, (2011)

Full Text: HTML

Abstract

The adsorption, thermal evolution, and electron irradiation of 2-butanol on Pt(111) were investigated with reflection absorption infrared spectroscopy (RAIRS). A simulated vibrational spectrum of a single 2-butanol molecule was calculated using density functional theory to facilitate vibrational assignments. Exposures of 0.2 Langmuir (L) and lower result in both isolated 2-butanol molecules with minimal lateral interactions and hydrogen-bonded clusters. The thermal evolution following a 4.0 L exposure shows that the hydrogen-bonded multilayer desorbs around 170 K, leaving a 2-butanol monolayer where hydrogen bonding still exists. At 190 K, a new feature at 1699 cm(-1) is attributed to the formation of butanone. Irradiation with 750 or 100 eV electrons leads to 2-butanol desorption and partial conversion to butanone, as indicated by the appearance of a peak at 1709 cm(-1).© 2011 American Chemical Society


Related Compounds

  • (±)-2-Butanol
  • UNII:FE7IK35O...
  • (S)-(+)-2-Butanol
  • (R)-(-)-2-Butanol

Related Articles:

Acidogenic fermentation of Scenedesmus sp.-AMDD: Comparison of volatile fatty acids yields between mesophilic and thermophilic conditions.

2016-01-01

[Bioresour. Technol. 200 , 624-30, (2015)]

Engineered Nanostructures of Haptens Lead to Unexpected Formation of Membrane Nanotubes Connecting Rat Basophilic Leukemia Cells.

2015-07-28

[ACS Nano 9 , 6738-46, (2015)]

Convenient QSAR model for predicting the complexation of structurally diverse compounds with β-cyclodextrins

2009-01-01

[Bioorg. Med. Chem. 17 , 896-904, (2009)]

Evaluation of injection methods for fast, high peak capacity separations with low thermal mass gas chromatography.

2015-05-01

[J. Chromatogr. A. 1392 , 82-90, (2015)]

The substrate binding cavity of particulate methane monooxygenase from Methylosinus trichosporium OB3b expresses high enantioselectivity for n-butane and n-pentane oxidation to 2-alcohol.

2011-11-01

[Biotechnol. Lett. 33(11) , 2241-6, (2011)]

More Articles...