Cyclooxygenase-2 regulates NLRP3 inflammasome-derived IL-1β production.
Kuo-Feng Hua, Ju-Ching Chou, Shuk-Man Ka, Yu-Ling Tasi, Ann Chen, Shih-Hsiung Wu, Hsiao-Wen Chiu, Wei-Ting Wong, Yih-Fuh Wang, Change-Ling Tsai, Chen-Lung Ho, Cheng-Hsiu Lin
Index: J. Cell Physiol. 230(4) , 863-74, (2014)
Full Text: HTML
Abstract
The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is a reactive oxygen species-sensitive multiprotein complex that regulates IL-1β maturation via caspase-1. It also plays an important role in the pathogenesis of inflammation-related disease. Cyclooxygenase-2 (COX-2) is induced by inflammatory stimuli and contributes to the pathogenesis of inflammation-related diseases. However, there is currently little known about the relationship between COX-2 and the NLRP3 inflammasome. Here, we describe a novel role for COX-2 in regulating the activation of the NLRP3 inflammasome. NLRP3 inflammasome-derived IL-1β secretion and pyroptosis in macrophages were reduced by pharmaceutical inhibition or genetic knockdown of COX-2. COX-2 catalyzes the synthesis of prostaglandin E2 and increases IL-1β secretion. Conversely, pharmaceutical inhibition or genetic knockdown of prostaglandin E2 receptor 3 reduced IL-1β secretion. The underlying mechanisms for the COX-2-mediated increase in NLRP3 inflammasome activation were determined to be the following: (1) enhancement of lipopolysaccharide-induced proIL-1β and NLRP3 expression by increasing NF-κB activation and (2) enhancement of the caspase-1 activation by increasing damaged mitochondria, mitochondrial reactive oxygen species production and release of mitochondrial DNA into cytosol. Furthermore, inhibition of COX-2 in mice in vivo with celecoxib reduced serum levels of IL-1β and caspase-1 activity in the spleen and liver in response to lipopolysaccharide (LPS) challenge. These findings provide new insights into how COX-2 regulates the activation of the NLRP3 inflammasome and suggest that it may be a new potential therapeutic target in NLRP3 inflammasome-related diseases.© 2014 Wiley Periodicals, Inc.
Related Compounds
Related Articles:
2015-01-01
[Nat. Commun. 6 , 5794, (2015)]
2015-05-01
[Biomaterials 51 , 1-11, (2015)]
2015-04-22
[J. Ethnopharmacol. 164 , 265-72, (2015)]
2015-01-01
[Drug Des. Devel. Ther. 9 , 1555-84, (2015)]
2015-04-01
[Dev. Dyn. 244(4) , 591-606, (2015)]