Biochemical Journal 2014-04-15

Studies on the regulation of the human E1 subunit of the 2-oxoglutarate dehydrogenase complex, including the identification of a novel calcium-binding site.

Craig T Armstrong, J L Ross Anderson, Richard M Denton

Index: Biochem. J. 459(2) , 369-81, (2014)

Full Text: HTML

Abstract

The regulation of the 2-oxoglutarate dehydrogenase complex is central to intramitochondrial energy metabolism. In the present study, the active full-length E1 subunit of the human complex has been expressed and shown to be regulated by Ca2+, adenine nucleotides and NADH, with NADH exerting a major influence on the K0.5 value for Ca2+. We investigated two potential Ca2+-binding sites on E1, which we term site 1 (D114ADLD) and site 2 (E139SDLD). Comparison of sequences from vertebrates with those from Ca2+-insensitive non-vertebrate complexes suggest that site 1 may be the more important. Consistent with this view, a mutated form of E1, D114A, shows a 6-fold decrease in sensitivity for Ca2+, whereas variant ∆site1 (in which the sequence of site 1 is replaced by A114AALA) exhibits an almost complete loss of Ca2+ activation. Variant ∆site2 (in which the sequence is replaced with A139SALA) shows no measurable change in Ca2+ sensitivity. We conclude that site 1, but not site 2, forms part of a regulatory Ca2+-binding site, which is distinct from other previously described Ca2+-binding sites.


Related Compounds

  • 2-Ketoglutaric aci...
  • Alpha-Ketoglutari...
  • Potassium hydrogen...
  • α-Ketoglutarate de...

Related Articles:

Urinary metabolic fingerprinting of mice with diet-induced metabolic derangements by parallel dual secondary column-dual detection two-dimensional comprehensive gas chromatography.

2014-09-26

[J. Chromatogr. A. 1361 , 265-76, (2014)]

Physiology and pathophysiology of organic acids in cerebrospinal fluid.

1993-01-01

[J. Inherit. Metab. Dis. 16(4) , 648-69, (1993)]

Age-related reference values for urinary organic acids in a healthy Turkish pediatric population.

1994-06-01

[Clin. Chem. 40(6) , 862-6, (1994)]

Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine.

1984-03-01

[Clin. Chem. 30(3) , 426-32, (1984)]

Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease.

[J. Chromatogr. A. 562(1-2) , 125-38, (1991)]

More Articles...