Acta Biomaterialia 2013-09-01

Pharmacologically tunable polyethylene-glycol-based cell growth substrate.

Raphael J Gübeli, Dougal Laird, Martin Ehrbar, Benjamin S Ritter, Thorsten Steinberg, Pascal Tomakidi, Wilfried Weber

Index: Acta Biomater. 9(9) , 8272-8, (2013)

Full Text: HTML

Abstract

Biohybrid materials combining synthetic polymers with biological components are highly suited for tissue engineering in order to emulate the behavior of natural materials such as the extracellular matrix (ECM). In order to allow for an optimal cell-material interplay, the physical and biological parameters of the artificial matrix need to be dynamically remodeled during cultivation. Current tissue engineering concepts are mainly based on passive remodeling mechanisms including the degradation of the hydrogel and the release of incorporated biomolecules and therefore do not enable external adjustment of cultivation conditions. We present a novel hydrogel material that is able to serve as a cell growth matrix, whose degradation and presentation of cell-interacting biomolecules can be externally controlled by the addition of a pharmacological substance. The hydrogel is based on branched polyethylene glycol that is covalently decorated with the aminocoumarin-antibiotic switchable gyrase B protein conferring stimulus-responsive degradation. ECM properties were conferred to the hydrogels with cell attachment motifs and a general approach for the incorporation and inducible release of therapeutic biomolecules. This smart biohybrid material has the potential to serve as a next-generation tissue engineering device which allows for dynamic external adjustment of the physical and biological parameters, resulting in optimally controlled tissue formation. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.


Related Compounds

  • Novobiocin Sodium...

Related Articles:

Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157.

2014-01-01

[PLoS ONE 9(8) , e105272, (2014)]

Mechanistic insights into Mg2+-independent prenylation by CloQ from classical molecular mechanics and hybrid quantum mechanics/molecular mechanics molecular dynamics simulations.

2014-08-05

[Biochemistry 53(30) , 5034-41, (2014)]

Evaluation of the usefulness of breast cancer resistance protein (BCRP) knockout mice and BCRP inhibitor-treated monkeys to estimate the clinical impact of BCRP modulation on the pharmacokinetics of BCRP substrates.

2015-05-01

[Pharm. Res. 32(5) , 1634-47, (2015)]

Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range.

2014-05-30

[Oncotarget 5(10) , 3287-306, (2014)]

A combination of direct viable count and fluorescence in situ hybridization for specific enumeration of viable Lactobacillus delbrueckii subsp.bulgaricus and Streptococcus thermophilus.

2012-03-01

[Lett. Appl. Microbiol. 54(3) , 247-54, (2012)]

More Articles...