Analyst (Cambridge UK) 2012-11-21

Tactile multisensing on flexible aluminum nitride.

Simona Petroni, Francesco Guido, Bruno Torre, Andrea Falqui, Maria Teresa Todaro, Roberto Cingolani, Massimo De Vittorio

Index: Analyst 137(22) , 5260-4, (2012)

Full Text: HTML

Abstract

The integration of a polycrystalline material such as aluminum nitride (AlN) on a flexible substrate allows the realization of elastic tactile sensors showing both piezoelectricity and significant capacitive variation under normal stress. The application of a normal stress on AlN generates deformation of the flexible substrate on which AlN is grown, which results in strain gradient of the polycrystalline layer. The strain gradient is responsible for an additional polarization described in the literature as the flexoelectric effect, leading to an enhancement of the transduction properties of the material. The flexible AlN is synthesized by sputtering deposition on kapton HN (poly 4,4'-oxydiphenyl pyromellitimide) in a highly oriented crystal structure. High orientation is demonstrated by X-ray diffraction spectra (FWHM = 0.55° of AlN (0002)) and HRTEM. The piezoelectric coefficient d(33) and stress sensitive capacitance are 4.7 ± 0.5 pm V(-1) and 4 × 10(-3) pF kPa(-1), respectively. The parallel plate capacitors realized for tactile sensing present a typical dome shape, very elastic under applied stress and sensitive in the pressure range of interest for robotic applications (10 kPa to 1 MPa). The flexibility of the device finalized for tactile applications is assessed by measuring the sensor capacitance before and after shaping the sensing foil on curved surfaces for 1 hour. Bending does not affect sensor's operation, which exhibits an electrical Q factor as high as 210, regardless of the bending, and a maximum capacitance shift of 0.02%.


Related Compounds

  • Aluminum nitride

Related Articles:

Measuring the refractive index around intersubband transition resonance in GaN/AlN multi quantum wells.

2013-02-11

[Opt. Express 21(3) , 3800-8, (2013)]

1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.

2010-01-01

[IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1) , 82-7, (2010)]

Hybrid density functional theory studies of AlN and GaN under uniaxial strain.

2013-01-30

[J. Phys. Condens. Matter 25(4) , 045801, (2013)]

Theoretical analysis of SAW propagation characteristics in (100) oriented AlN/diamond structure.

2010-01-01

[IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1) , 46-51, (2010)]

FEM simulation of Rayleigh waves for CMOS compatible SAW devices based on AlN/SiO₂/Si(100).

2014-01-01

[Ultrasonics 54(1) , 291-5, (2014)]

More Articles...