Ecotoxicology 2008-05-01

In-situ microcosms, a tool for assessment of pesticide impacts on oyster spat (Crassostrea gigas).

Sabine Stachowski-Haberkorn, Françoise Quiniou, Morgane Nedelec, René Robert, Gwendolina Limon, Denis de la Broise

Index: Ecotoxicology 17(4) , 235-45, (2008)

Full Text: HTML

Abstract

Effects of the herbicide Basamaïs (bentazon) and the fungicide Opus (epoxiconazole) on oyster spat (Crassostrea gigas) were assessed using in-situ microcosms in a field experiment lasting 13 days. Six-week-old hatchery spat (mean size 1.1 mm), previously collected on PVC plates, was immersed in glass bottles filled with 200 mum filtered seawater. Bottles were maintained underwater at 6 m depth and their water content changed every other day. Growth, measured as shell area index increase, was 126 +/- 4% in the control bottles. While no growth differences were observed between control and individual pesticide treatments at 10 microg l(-1), oysters treated with a mix of 10 microg l(-1) Opus and 10 microg l(-1) Basamaïs showed a 50% growth reduction compared with the control (P < 0.0001), suggesting a synergistic effect of these contaminants. Laboratory controls in microcosms maintained in a water bath with filtered natural light, were not significantly different from in-situ microcosm controls in the field, for organic weight content or growth. This in-situ experiment in microcosms allowed us to conclude that: (1) oyster spat can achieve significant growth in bottles immersed in situ without supplementary food; (2) this microcosm system is reliable and easy to use for environmental toxicity tests with C. gigas spat; (3) such microcosm systems can also be run in a laboratory water bath instead of more technically difficult immersed field experiments; (4) the synergistic effect observed here, at a concentration simulating a peak agricultural runoff event, suggests that the impacts of pesticides could be a real threat for oysters in estuarine areas.


Related Compounds

  • Epoxiconazole

Related Articles:

Molecular modelling of the emergence of azole resistance in Mycosphaerella graminicola.

2011-01-01

[PLoS ONE 6(6) , e20973, (2011)]

Enantiomeric separation of triazole fungicides with 3-μm and 5-μml particle chiral columns by reverse-phase high-performance liquid chromatography.

2011-07-01

[Chirality 23(6) , 479-86, (2011)]

Inhibition of efflux transporter-mediated fungicide resistance in Pyrenophora tritici-repentis by a derivative of 4'-hydroxyflavone and enhancement of fungicide activity.

2005-06-01

[Appl. Environ. Microbiol. 71(6) , 3269-75, (2005)]

Cuticular uptake of xenobiotics into living plants. Part 2: influence of the xenobiotic dose on the uptake of bentazone, epoxiconazole and pyraclostrobin, applied in the presence of various surfactants, into Chenopodium album, Sinapis alba and Triticum aestivum leaves.

2006-07-01

[Pest Manag. Sci. 62(7) , 664-72, (2006)]

Selected pesticides adsorption and desorption in substrates from artificial wetland and forest buffer.

2011-07-01

[Environ. Toxicol. Chem. 30(7) , 1669-76, (2011)]

More Articles...