Biodegradation 2006-12-01

Transformation of the herbicide 2,6-dichlorobenzonitrile to the persistent metabolite 2,6-dichlorobenzamide (BAM) by soil bacteria known to harbour nitrile hydratase or nitrilase.

Maria Sommer Holtze, Jan Sørensen, Hans Christian B Hansen, Jens Aamand

Index: Biodegradation 17(6) , 503-10, (2006)

Full Text: HTML

Abstract

In soil the herbicide 2,6-dichlorobenzonitrile (dichlobenil) is degraded to the persistent metabolite 2,6-dichlorobenzamide (BAM) which has been detected in 19% of samples taken from Danish groundwater. We tested if common soil bacteria harbouring nitrile-degrading enzymes, nitrile hydratases or nitrilases, were able to degrade dichlobenil in vitro. We showed that several strains degraded dichlobenil stoichiometrically to BAM in 1.5-6.0 days; formation of the amide intermediate thus showed nitrile hydratase rather than nitrilase activity, which would result in formation of 2,6-dichlorobenzoic acid. The non-halogenated analogue benzonitrile was also degraded, but here the benzamide intermediate accumulated only transiently showing nitrile hydratase followed by amidase activity. We conclude that a potential for dichlobenil degradation to BAM is found commonly in soil bacteria, whereas further degradation of the BAM intermediate could not be demonstrated.


Related Compounds

  • BAM

Related Articles:

Study of degradation intermediates formed during electrochemical oxidation of pesticide residue 2,6-dichlorobenzamide (BAM) at boron doped diamond (BDD) and platinum-iridium anodes.

2014-08-01

[Chemosphere 109 , 84-91, (2014)]

Microbial degradation of the benzonitrile herbicides dichlobenil, bromoxynil and ioxynil in soil and subsurface environments--insights into degradation pathways, persistent metabolites and involved degrader organisms.

2008-07-01

[Environ. Pollut. 154(2) , 155-68, (2008)]

2,6-Dichlorobenzamide (BAM) herbicide mineralisation by Aminobacter sp. MSH1 during starvation depends on a subpopulation of intact cells maintaining vital membrane functions.

2010-12-01

[Environ. Pollut. 158(12) , 3618-25, (2010)]

Inherent mineralization of 2,6-dichlorobenzamide (BAM) in unsaturated zone and aquifers--effect of initial concentrations and adaptation.

2011-10-01

[Environ. Pollut. 159(10) , 2801-7, (2011)]

C and N isotope fractionation during biodegradation of the pesticide metabolite 2,6-dichlorobenzamide (BAM): potential for environmental assessments.

2012-02-07

[Environ. Sci. Technol. 46(3) , 1447-54, (2012)]

More Articles...