Nucleic Acids Research 2005-01-01

Mutagenic effects of abasic and oxidized abasic lesions in Saccharomyces cerevisiae.

Yoke W Kow, Gaobin Bao, Brenda Minesinger, Sue Jinks-Robertson, Wolfram Siede, Yu Lin Jiang, Marc M Greenberg

Index: Nucleic Acids Res. 33(19) , 6196-202, (2005)

Full Text: HTML

Abstract

2-deoxyribonolactone (L) and 2-deoxyribose (AP) are abasic sites that are produced by ionizing radiation, reactive oxygen species and a variety of DNA damaging agents. The biological processing of the AP site has been examined in the yeast Saccharomyces cerevisiae. However, nothing is known about how L is processed in this organism. We determined the bypass and mutagenic specificity of DNA containing an abasic site (AP and L) or the AP analog tetrahydrofuran (F) using an oligonucleotide transformation assay. The tetrahydrofuran analog and L were bypassed at 10-fold higher frequencies than the AP lesions. Bypass frequencies of lesions were greatly reduced in the absence of Rev1 or Polzeta (rev3 mutant), but were only marginally reduced in the absence of Poleta (rad30 mutant). Deoxycytidine was the preferred nucleotide inserted opposite an AP site whereas dA and dC were inserted at equal frequencies opposite F and L sites. In the rev1 and rev3 strains, dA was the predominant nucleotide inserted opposite these lesions. Overall, we conclude that both Rev1 and Polzeta are required for the efficient bypass of abasic sites in yeast.


Related Compounds

  • (4S,5R)-4-Hydroxy...

Related Articles:

Reduced repair capacity of a DNA clustered damage site comprised of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 2-deoxyribonolactone results in an increased mutagenic potential of these lesions.

2014-04-01

[Mutat. Res. Fundam. Mol. Mech. Mutagen. 762 , 32-9, (2014)]

Analysis of base excision DNA repair of the oxidative lesion 2-deoxyribonolactone and the formation of DNA-protein cross-links.

2006-01-01

[Meth. Enzymol. 408 , 48-64, (2006)]

Histone-catalyzed cleavage of nucleosomal DNA containing 2-deoxyribonolactone.

2012-05-16

[J. Am. Chem. Soc. 134(19) , 8090-3, (2012)]

Use of fluorescence sensors to determine that 2-deoxyribonolactone is the major alkali-labile deoxyribose lesion produced in oxidatively damaged DNA.

2007-01-01

[Angew. Chem. Int. Ed. Engl. 46(4) , 561-4, (2007)]

2-Deoxyribonolactone lesions in X-ray-irradiated DNA: quantitative determination by catalytic 5-methylene-2-furanone release.

2005-09-26

[Angew. Chem. Int. Ed. Engl. 44(38) , 6210-3, (2005)]

More Articles...